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I, SUMMARY REPORT

The time schedule for performing the work sponsored by this
grant has a natural division into three distinct parts.

Part 1. May 15, 1968 to early Spring 1969

Part 2. Extenuating circumstances. Principal investigator
had open-heart surgery in June 1969 and a pacemaker
installed in September 1969,

Part 3. Basically from January 1970 to August 1, 19270,

Part 1 was aproductive period. It started with a series of
seminars at West Virginia University, covering a variety of topics,
which contributed to some of the material in the notes that were
completed in Part 3. A paper was delivered at the Spring (1969)
meeting of the American Physical Soeiety in Washington on one
aspect of the work, "Maximum Power Transfer Coefficient Between Two
Confocal Apertures’. A paper on this subject was well in progress
when the principal investigator moved to Florida Technological
University in August 1968. Professor Henderson then collaborated with
this part of the.work and contributed ideas that changed the basic
format of some of the proofs. It appeared in the November, 1969
issue of J. Opt. Soc. of America as a joint publication. At this
stage it was thought that progress was being made on the computer
solution of the resonator problem with an output coupling aperture.
This work led to a revision of Chapters IV, Sections D and E, of the
notes, and the addition of Appendices G and H.

Some revision of the objectives of the grant also occurred
during this period. Because there was no way for the principal
investigator to pay himself as a consultant or even to really
buy released time, as originally planned, the work time for the
grant was contributed during evenings, holidays, and weekends, and
the corresponding money (with approval from NASA) saving was used
to establish a CO, laser laboratory at Florida Technological
University and tozbegin some thin film studies.

Part 2. The only accomplishments during this period was to

edit the galley proof for the November, 1969, article in JOSA.

Part 3 was another productive period. Chapters V, VI, VII,
and Appendices I, J, K, L, M, N of the notes on Laser Optics’
were completed. A simplified version of a graphical representation
of the law of propagation of a gaussian beam was discovered, and
will likely lead to a publication. Preparation of the manusciipt is
about half complete. The spatial coherence of optical resonators



was investigated and meaningful, but not earth shaking, conclusions
were reached. It is possible that my derivation of conjugate
relations for mutual coherence for the case of a virtual entrance
pupil is a new result. The treatment of coherence in the notes
raises some new questions concerning microscope illumination and the
action of iterated phase transformers. It was discovered early in
this period that the computer method for solving the resonator
problem with output coupling aperture, although technically correct,
was not very practical. Progress in building a CO, laser was slower
than I had hoped, but, nonetheless, satisfactory. “One laser is now
complete except for one small machine shop job on one of the mirror
mounts. All these things are described more completely in the notes
or in the Technical Repoxt that follows.



date of this grant.

I1. FIMANCIAL REPORT

All funds were committed prior to the August 1, 1970, terminating

My records are as follows:

Fees and Wages

Prof. A. D. Levine, Consultant

Prof. W. E. Vehse, Consultant

Prof. W. M. Squire, Consultant
Principal Investigator , Consultant
Principal Investigator, released time
Rodney Hamilton, Student Assistant
Linda Stover, Typist

Margaret Cooper, Drafting

Capital Equipment

IR Detector

Mirrors, lenses

Mounts and Translational Stages
Pressure Gauges

Expenses

Glassware, Dewars

Chemicals and Salt Flats

Duplicating, Library Sexrvice, Computer
Travel

Publication Fee

Electronic Parts, Tools, Apparatus

Overhead and Indirect Cost @20% Provisional

University Contribution (through faculty salary)

$1,300.00
435.00
357.50
1,300.00
654.60
195.00
47.03
__25.00

1,945.00
1,927.00
1,130.00

459.00

115.37
263.69
223.06

892.90
191.50
421.35

There are a few small accounts that are outstand-
ing that will be cleaned up in the near future.
Finance and Accounting will send their official report in the near
future.

The FTU office of

4,334.13

5,461.00

1,304,87

1,400.00

12,500.00

657.90

$13,157.90



111, TECHIICAL REPORT

(a) Maximum Power Transfer Between Confocal Apertures

This work was culminated with a publication. Reprints
were sent to the Optical Systems Branch and the Grants and
Contracts Office at a prior date. For completeness, this
reprint constitutes the last pages of the first two of these
final reports.

(b) Technical Notes on '"Laser Optics”: Distribution List

Revisions to Chapter IV, Section D and E, along with
Appendices G and H, were distributed at a prior date. This
report contains the recent additions to this work that begins
with Chapter V and Appendix I. The next two pages are
reproductions of the Table of Zontents. For completeness,
the first two coples of this report contain the old notes
as well as recent additions. Copies of these notes have
been sent to:

2 coples: complete set: MASA Optical System Branch
Atten: Nelson McAwvoy, Code 524

1 copy: complete set: Dr. John R, Bolte, FTU

1 copy: complete set: Dr. William C. Oelfke, FTU

1 copy: complete set: Rodney Hamilton, FTU

1 copy’ complete set: Dean Robert Kersten, FTU

2 copies: complete gset NASA Grants and Contracts O0ffice

(with this final report)

8 copies: recent additions NASA Grants and Contracts Office
(with this final report)

1 copy® recent additions Office of "miversity Research
(with this final report) Florida Technological University

1 copy; recent additions NASA Optical Systems Branch
(with this final report) c/o Nelson McAvoy, Code 524
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(c) Radiation Pattern from a Laser with an Output Coupling Iris

The problem to be solved is clearly specified by Equation
(46) and Appendices G and H (for combining solutions) of the
notes. The integral Equation (4A) has the form

td
PRos {. <

. [ (BUSG, + URG,)
W=\ (& T v @) udy udy, ()
y4 Jﬁxdo\}ﬁku, Z\% o o Y1C 4

bl C b&

<
In the following, the subscript Q; is dropped, but we keep in
mind the fact that two solutions, }Z'f / and jlj ; ¢ must be
combined to form one .
Cartesian component E Y, for each mode.

The plan originally proposed was to represent ‘// by several
points §ay 25) across the mirror aperture (radially outward from
center to edge). The value of W at points between the chosen
25 was then to be obtained using the Lagrange interpolation

formula a5
o= T %
PR

-

Integrations would then be performed using something like a
Gauss integration formula, where it appeared that 48 or more
points would be required to achieve t.he required accuracy,

ﬁ fryda = ¢, 5" ar £(u)

Combiningatzhe last two equations w’fﬂ: ,(46) then gives
2S48 4y A[zl/éfu/;ac}
é(' ? 2 Z LU;.. .U f@«e
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The result is thus a 25x25 non-Hermitian complex matrix to solve
for the 25 complex values that define {/ . Since there are 625
matrix elements, each with 48x48 = 2304 terms in the summation,

a total of 48x408x525 = 1,44N,00N terms must be computed for each
matriz. Each term involves the calculation of two Bessel functions
of large argument. one Lagrange coefficient., one sine function,
one cosince function, etc. If 50 hasic number manipulations are
needed for each Bessel function. and 40 for the rest of an element
computation, there are 1.440,000,x59x50x40 = 1. btx10M basic number
manipulations. At 100 microsecods per manipulation, this “brute
force method' still represents 0.456 years to compute the elements
of one matrix for one ZE“ value.

Instead of consuming one year of computer time to solve one
problem, the principal investigator decided it was a more prudent
investment to look for better methods, which has been the case.
There has; however been no major breal through for a practical
solution of this problem. The group at Bell Laboratories has
apparently encounted similar difficulities in achieving accurate
answers to a general problem of this type. McCumber (recent
publication), hgwever hag continued to obtain results beyond
those for special cases by T. Li and B. Zucker (BSTJ, 57 (1967),
pp 984.986 and his earlier work (BSTJ, 44 (1965), »pp 333-363.

It should be pointed out that the single pags gsymmetric
situation is beginning to look feasible using this method. The
time required to obtain the elements of one matrix would be
in the order of a few 3 to 4 hours.

(d) Laser Laboratory: Thin Films

With the help of Nr. John R. Bolte and an assistant, Bruce
Stockton, who both contributed time to this project, we now
have one CO, laser nearly complete, and have bepgun construction
of another.” All that remains on the first is a small mechanical
alteration in one of the mirror mounts. Because we are sgtill in
the learning stage on this project, it is reasonable to expect
at least another year will be needed to bring anything new to
fruition. At the moment, we are strongly attracted to experi-
ments that involve the interaction of light with the depletion
layer in semiconductor junctions.

(e) Graphical Solution of Propagation Laws for a Gaussian Beam

A graphic . representation of Gaussian Beam Optics is
described in Section € of Chapter VII (pp 81-90) that is
simpler than analagous methods (all related through conformal
mapping) described by Collins (App. Opt. 3, 1264) pp 1263-1274),
Chu (BSTJ, Feb. (1966), np 287-299), Gordon (BSTJ, July (1964),
pp 1326 27), and Kogelnik and Li (App. Opt., 5, (1966), pp
1550-1567. This method has a direct correspondence to the
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laboratory situation in that a traveling light beam is
represented by a horigontal straight line with a linear
scale, and is a correspondingly convenient teaching aid
for the principles of Gaussian beam propagation. After
checking one additional reference, the principal invest-
igator plans to send a short article to Applied Optics.

-

Illumination of a Microscope

An equation is derived to relate the mutual coherence
function between conjugate points in the entrance and exit
pupils. This derivation on pages 102-115 of the notes for
the case of a virtual entrance pupil may be something new.
This result has been used by the principal investigator to
examine ways to improve the degree of coherence when illumi--
nating a microscope slide with an incoherent extended source.
The purpose in mind is, of course, to increase the resolving
power of the instrument. All attempts thus far have, in the
last analysis, amounted physically to focusing the source to
as small as an area as possible at some plane ahead of the
microscope slide.

The derivation given by Zernike (Physica, V, (1938),
op 785-795) is a little different than that leading to
Equation (146) of the notes. If diffraction of the con-
densing lens is taken into account (instead of extending
limits of integration to infinity., as we did. for a real
entrance pupil), the conclusion is: The degree of
coherence in a plane illuminated through a lens is the
same, whether a source of uniform brightness be imaged
on the plane or placed directly behind the lems. With
this scheme of illumination, it follows that the degree
of coherence is also independent of lens aberrations
and that a cheap condensing lens is just as good as a
well corrected achromat.



(2)

(h)

10

If, instead of focusing the source on the slide, the
source is first focused to a point well in front of the slide,
the degree of coherence is greatly enhanced. (Also, more
expensive lenses are required.) The principle investigator
is not aware of the extent to which these ideas are used in
actual practice, but is in the process of collecting several
references on the subject to see if there is anything new
here.

Resonator Mutual Coherence

The treatment of spatial mutual coherence in resonators
in Section K of Chapter VI (pp 68 to 75 of the notes) is
different from anything this outhor has seen, even though the
end results fall pretty much into the “already well known"
domain. The idea that mutual coherence can be improved by
passage through an iterated system of phase transformers is
something that should be tested experimentally. An experi-
ment is being designed to do this very thing.

Beam Spot Size

Although too late to include in the notes, the following
derivation for beam spot size on the two mirrors of a
resonator verifies Gordon and Kogelnik's result stated on
page 99 of the notes.

The law of propagation can be written (Equation 112):

w«f-.
i&f" = -
2
° /+ (TFW )2‘ ]
(1}
£ = / #
With mirrors placed at £, and ;ﬁ , these give:
w_*féluw— R 2,
27LN\C T TS~ j
/+2°(%,) I+ aZ (4, [
C{:Zz_"’é. = E .. T g 2 J
if(ﬁ) ;+1a7)

Now let MZ be a mirror located at a positive distance Zz
and with positive R, according to sign conventions in the
propagation laws. The two cases to consider for fﬂ, are



show in Figure 2. 1In both cases,
the rules for computing the
parameter g for the cavity give

@ . - 4
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Figure 2.

The result of substituting into (2) is

@,

-jl’. 'dz("‘j \Z

| = (/3)’/2.

(1-9, Y7+ d*

Subgtitution of the first for one of the denominators of the second

gives

| G

and alternately
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which can also be written:
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and result in the following quadratic expression for UVQ 5

(2 Y a,0-9) - (

> ) g\ Iﬂ?z) 0,
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The solution is
92

and when put into (3) yields 5
C(‘,dz_ N -4 4 )
LS

Thus,

w, g, -
“"“"'/W and MY =

W, g

12



D.

PURLICATIONS

Rexroad, Harvey N., ™Maximum Power Transfer Coefficient
Between Two Confocal Apertures , Bull. Am, Phys. Soc.
14, Yo. 4, (1269), ». 619, paper HCO.

Rexroad, Harvey M., and B, J. Henderson, "Maximum Power-
Transfer Coefficient Between Two Confocal Apertures ,
J. Opt. Soc. Am. 59, (1969), pp. 1415-1421.

Rexroad. Harvey N., ‘Laser Optics'', A set of notes prepared
for the Optical Systems Branch of 11ASA ag described in TIII-b
ahove.

"Graphical Representation of Gaussian Beam Optical Systems’ .
Preparation of a manuscript is about half complete., One
more reference article must be obtained before it is sent
to Applied Optics. Basis for the article is the material
of Chapter VII, Section C of notes (see III-b above).

The material described in Sections £, g, and h of the
Technical Report are the possible basis for additional
publications. The thin film work of Section (d) is in
early stages of development, but could result in
publications.

13
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V: “PLANS AMD RECOMMFIDATIONS

(a) Technical Worl: and Experiments

One result of this grant has been the training of the principal
investigator in the field of Laser Optics. He is very knowledgeable
of the classical aspects of this subject, and,with a little. effort,
can interpret literature on the quantum field theory and statistical
aspects. I hope you will feel free to use him as a consultant, if
the need arises. By continuing work along these same lines, the
knowledge and capabilities will be expanded, For the immediate
future, theoretical projects outlined under III-e, III £, and III-g
will be completed. Plang are then to examine the details of basic
interference experiments from the point of view of Quantum
Electrodynamics.

(b) Future Grants

I do not wish to propose another grant of this type at this
time. After we get things going smoothly at this new University,
and it becomes possible to buy released time for the principal
investigator, 1'll reconsider.

The one thing that is desperately needed is woney to support
students. In addition to the educational benefits to the students
involved. they will provide some relief to my work load (and to
that of other faculty members) so more of the future work described
can be accomplished. I will call soon to explore the possibility
of supporting one or two part-time student assistants over the
next two years at a cost of about $3,000 per year for the two of
them,
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CHAPTER V

WAVEGUIDE APPROACH

A. BASIC EQUATIONS

In Appendix A it was shown that the vector Helmholtz equatiomn

- -
vz E + KZE = , can be written in a form that is more

suitable for a beam generally directed along the iz axis, and

#.h2 .
with a # dependence of e . These results beginning with
Equation A38 are 2 -3
\AVIR S/ S
2 2 >
and V£ B +o B =0

2
where . v Vﬁ +‘ 'b;ga

(5.1)

and % %71 fé;

The components transverse to the £ axis were given by:

fez%z[‘vt ?;-—Bz’!"ﬂ @"”w"wt ﬂ

(5.2)

Fy = e lve (B8 -4 8xV,B,)]
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The boundary conditions at a perfectly conducting surface with normal
~
N are:

A =2 ~N P |
AxE=0 and n-B=0

(5.3)

«

B, SOLUTION IN CARTESIAN COORDINATES

In Carlesian coordinates a transverse component of electric
field is given by (From 5.1):
BZE 'L
2% 242 2

and has a solution

5 = A sin(fyx+by) 5;”(#2ﬂ47+b“7)ei1%’§ (5. 5)

where 4221} ,,;‘" =o*

The general solution may then be obtained by a superposition of

expressions of this type, where all values of ‘féx 'é? and ‘{@3
)

|RirkZ et

are possible. 1In waveguides the boundary conditions restrict kx

consistent with

and “;?? to one or another of certain eigen values. ~



30

From Equation (5.2) it can be seen that TEM modes are only

possible if

"2_2— {AZ = 0'2:: Ov
TEM moJes (5.7)

If waves are very nearly TEM waves, as is the case for the optical
resonator equations derived using Fresnel zone diffraction formula

and the small angle approximation, then O  is almost zero. For

—
hzmz%"ﬁ (5.8)

The general solution using (5.5) then becomes:

+. 7

such waves, we put

’.Qfe
F4 7%

o
2 2 2
G’ :“P?x-l»ﬁ*’ ~O

The factor  has been inserted to account for the degeneracy.

To see how this comes about, notice that in a rectangle of dimen-

sions LXL ", the solutions must have the form S”") (’f%ﬁ) Siﬂ(qﬁ%{—é)
so that they vanish at the boundaries, A=0 & L ', and ,g = 0 &’ L N

Thus, %xt ?_EJT , and "}é‘:t ﬂ%r , where ﬂ)" and ”ﬁ

2

are integers. Since ) 2
2. T 2 2Y o
o= = i?x “?" “5&2,@’ - 1L (ﬂx + n&?) 5

2 2_ . 2 2
T = .Z‘Inz ;w%f?& ﬂ“n}(“}ﬂ"")

2
5 - AlT) sin (%;,g( “’bx ).ss'n ("?2.13 + bﬁ)e rdo (5

)
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the number of possible values of ¥} determines the number of
solutions having the same 0 . 1f we plot [lu against nx

b

each point corresponds to a possible (nx n .  These points
. » '

5 nE+ng =nt

® °© ®

L 3

L J

®

®
®

®

L

®

L L—
*®

Figure 5.1. TIllustrating the number of states with the
same 0‘2 = the number of points

along a circle.

are uniformly distributed over the plane, and each occupies a unit

) 2 2 _ 2
area. The points on the circle ﬂX +}7q =)} are those correspond-
ing to the same 0"2: zg na . Thus, the number, N , of solutions
with G’Zﬁ- % N%  is the area of the circle 'ﬂ'ﬂa =N,
Then) dN: Zﬂ'ném = L U'é T is the number with g~

between ' and O~ 4d0 , and is proportional to U"J 7,

C. COMPARISON WITH QUANTUM MECHANICS

Substitution of .
. he

A
5;:‘ Wix,n,2)e (5.10)
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2,42 )
into the Helmholtz equation, (v + % )E - O_) gives,

54 BW Y 2 EW=0.
2x2+89 h32+(% R

2
1 %2: _,’12 , We can again put h:mz ‘k‘—;%z

to obtain:

. 9,
'v:w+ BBZWZ +24%%l-£ -ZJO'Z%P + (o L%-Z)W"O. (5-“

Now suppose that ?} is a very slowly varying function of Z . For

. 2
such a wave, the ;;i;_}.i term is negligible compared to the
), oY
2l &= term.
o2

of no importance. Equation (5.10) then reduces to

Also, since @~ is small, the last two terms are

VE Y 4+ 24 %BW = (5.12)

Now consider the quantum mechanical description of a particle

that has been directed along the Z

axis with speed ¥V . 1In the
Schrodinger equation, Vz W o %EJ’ g-g: , we can put
bw =V Bw , = b., and -h: 3 - Again, if
2% my A
’b‘&w is neglected compared to 24 #e ’é};b_ , we obtain
5@‘ oe

(5.13)
\ v.baw + 24‘ w =0
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which is identical to Equation (5.12) above. Thus, the analogy
between the spreading of the transverse cross section of a light
beam with that of a wave packet representing a particle appears
rather strong. Although approximations were used to show this
analogy, it is not obvious that they are essential. It should be
remarked that Maxwell's equations have the same form in Classical
Electrodynamics as in Quantum Electrodynamics. The intensity
patterns for such problems turn out to be identical. This
connection between classical and quantum electrodynamics is
elucidated in "Quantum Mechanics™ by Leonard Schiff (McGraw-Hill)

pp. 390-95.
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CHAPTER VI
PARTIALLY COHERENT POLYCHROMATIC LIGHT

A. INTRODUCTION=*

If properly applied, the principles of physics and mathematics
that were known as early as 1963, and possibly as soon as 1955,
appear to agree with experiments thus far performed in this field.
It is, however, difficult to glean from present treatﬁents the
pertinent points needed to answer many basic questions concerning
the coherence of light beams, interference patterns, and the pre-
cise conditions required for observing beats between two signals.

The pﬁrpose of this chapter is first to collect the fundamental
ideas into a reasonably complete, but nonetheless, terse, package;
and secondly to treat some of the problems of interest in laser work.
The new things that have evolved or things that have been clarified
are:

(1) Monochromatic light has been assumed for much of the Work

in the earlier chapters. It is known, but not often

emphasized, that it is really the Fourier transforms of the

field components that obey the basic diffraction integral

equation. Technically, it follows that the foregoing

integyal equations for laser modes really apply to the

Fourier transforms.

*A large part of the introductory material of this section follows the
treatment in Born and Wolf%. The best and most complete treatment to
date is that of Mandel and Wolfl3., A fairly recent book by Klauder and
Sudarshan!" is also highly recommended but is more concerned with quantum
aspects that are not treated in the present work.



(2)

and

(3

It is also known that the Fourier transform of the mutual
s :
coherence function rq (a tilda denotes Fourier transform)
obeys a wave equation. Propagation laws and a diffraction
~
integral can, consequently, be obtained for I . an integral

s
equation for laser modes can be obtained for I" that is
analagous to Equation 45. The upshot of this revelation is
that idealized laser light has an almost complete mutual
space coherence as well as the better recognized temporal,.
and corresponding long coherence length. The latter, of
course, arises from the very narrow frequency spread that is
achieved with the combination of a high resonator Q along with

the superregenerative effect of the lasing medium. (Coherence

lengths of a few hundred kilometers have been achieved).

The important factor for obtaining beats between two signals
is temporal coherence and not merely the narrowness of the
frequency spread, as is sometimes wrongly assumed. Beats are

possible when A‘% >> 'Fz-'& provided the frequency com-

ponents have the required temporal coherence. On the other
hand, the condition ~ “Fz w‘F. >7 ﬁ% assures the required

temporal coherence.

The discussion of this chapter makes use of Classical

Electrodynémics. Although a different viewpoint can be gained

using Quantum Electrodynamics and a number representation of a

boson field, so far as the author knows, the experimental results

35
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predicted by the two theories for the experiments considered are
in agreement. To answer questions concerning the actual thermo-
dynamic equilibrium density of photons with certain energy and
phase, for example, it is necessary to resort to the quantum

theory.



37

B, REPRESENTATION OF ACTUAL POLYCHROMATIC FIELDS

At a given point ;? in space and instant of time, j’ s the
light coming from a source is generally made up of light from a
very large number of different sources, each having atomic
dimensions. By the principle of superposition, a Cartesian com-—
ponent (such as E}‘( or % ) of field, denoted by W"f), is

obtained by adding together the contributions from each oscillator.
~
W = 3 a, es (9,-2mvi) (52)
L

where each frequency, ‘f—/ , has a phase @y and amplitude, d,u
If ﬁ{ﬂ)(ﬂ) represents the amplitude for waves with frequency be-

tween 4J and j)-}’JiJ , this equation can be written:

W(ﬁ'){j) - fwﬁ{ﬁl) ws(@w)»mﬂf)éﬁc or

° L (o1)-2T44) (‘5-/)

V%) = (R fo aty)e du .

It is convenient to define ‘,U(ﬁ‘) as:

_ o), ~a20¥F [0 | sW \
W) = j;; (ame™™ )" = f,, ZE A )
£9

O
w=a2ryY ¢ W=ae
Clearly, W(ﬁ'.) is uniquely specified by the actual signal WW)(;),
as is WU)(}) ,» where

Wi#) = W)+ Y90) (53)
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It is a mathematical convenience that leads us to include both

amplitude and phase in one symbol

T = aw)e®” (59)

From a strict mathematical point of view, we could begin with

the fact that any real sectionally continuous function, such as

A
EZ q/( )(ﬁ) , can be represented by the FOURIER INTEGRAL THEOREM*

- f
yay < L f LW
w=27y

Writing this as the sugbof two integrals, 0 ;
(o - 'wft AL 1-_4'(4}
ZWW(i): ,{; W:u)e" d¥ + fo Wi-»)e dy

and recalling that Aq,(ﬂ) is real, it is apparent that the second

of the integrals must be the complex conjugate of the first.

Therefore,

(556)

\ Vo) = U (+v)

and,

wm. “"4!..&07 -
W4y = W) e JﬁJJ (57)
v = J, 9 >
where Re means ''real part of". Again we define ¢Y$) and gﬂ’i)(j)

so that W(f) = (!/(’”(f) + ;’W(‘.)(#) 2
j
and Wit) = f gj(w} e™ . (50

*Throughout this treatise a tilda will be used to denote the
FOURIER TRANSFORM, and an asterisk for the complex conjugate.
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Because of the reality requirement for qj(ﬁ)(}) , not only

W‘h)/j) » but also W{JD/)") and W/j) are completely

specified by the positive frequencies.

The frequency spectrum of a real signal is found with well

) ‘ ) . oo i)t
established methods. Equation (55) is multiplied by e d1
and integrated from «@& to +<O : )
o0 Jw'F oo oo -4'277'“}'4’)'*
2[ Ty e’ = | Ve dydt
20 ‘ - Yo% g

which because of (55) is:

_ r" Ty S(-¥)du = Gv)

T}yus) -
~ <D i
W) = 2 f e’ 54 (59)
' i 5 or
from (58)
~ <0 2nUXx ~ ~ j
WP(;:)T:VE :v[wll/(f)ed d i 5V (-0) =¥ ()
FREQUENCIES

Admplitude Modulation. As an example,a 100% amplitude modulated

carrier has two positive frequency components. That is:
-‘/"Mf»?)-’-’ Deos St eos Rt = eps (R+5)t 4+ cos (2-3)% ,

-so that the two positive frequency components are ﬂ,\'g and 2= ° "

Using (59), we obtain,



40

et _ilevd) jle=-8)t  _p(n-s)k] jam
o+

. e d

ij):zf {e e L& e
) 2 2

I}\JJ(*V) = B’(w-l&-ﬁ-s)) +3 (W +(.sz+$))
4+ 5 (w-(2-D) + 3 (w+(2-3) .

Examples of frequency and phase modulation are given in
Appendix I. A useful relation for combining any two sinusoidal

signals is given in Appendix J.

Summary

Thé superposition of signals of different frequencies and

amplitudes

‘w“,’) w=2ry

V) = ame R

a0 eH
W(ﬁ?(f) :_.f@(y) cas(@w)vzr)’iﬂ)di’ = e | ply)e dy,
® "]

AW

has lead to:

W=y, yt 5 W(-2)= @%(-w)

PoSITIVE
FREQVENCIES

Vi) = fo v (v) &l

e j Vet s [ Vitye' it
- o v -
W (v 2} (e 5 W ) (61)
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Using yj(ﬂ’){j) :faog/p) JX; [@[ﬁ)-bl)j']clj/
o ,
and W('O(J") _ f‘”a[ib) o [Co[y)_w:}']dﬂ (QM).
0
along with a (_ 1)) - Q(-}—y) and @/‘j}) = - @(—i—)))
J

the useful relations:

©2)

- 10 Q;,J - § @w)w%p jww&v
-0

e e

can be derived.
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C. HILBERT TRANSFORM RELATIONS

Starting with the last of equations (61),

@ £ (@) -wi)
v = [ame gy
o

we define a function (y(z) of the complex variable
Arir
=5) :
i (@-w2) +w7‘ L (®-wt)
y(@)z[ame’ " a —J‘am Ty
0

Clearly, this function, and also , satisfied the Cauchy—

a0 oy 27 Tppi__ pph
of - BT 7 ~ T BF

and is therefore analytic. This permits the use of the Cauchy

§ W(E'M'Z - Zﬂ;'j}?esicfue.s

a—:r

Riemann equations,

integral theorem

where the path of integration'has been selected to be the lower

half plane of Figure 7. Thus,

-R _
t4€ 1 ; N 1a) N 1a?
w’)dﬁ' w(ﬂee $) Jee’ d o+ Wit dt : gw'a )d2 - 2”’*‘2‘@‘}@
A-x ce’® A =x z'-% Z
R 21 bt ¢



(-7O) e (N, o

@ﬁ, Z’ j’+¢5€"6

C

Figure 7. Path of integration used to derive the HILBERT
TRANSFORM (or KRAMERS KRONIG) relations for

” A

W( ) and w(:).

.is to be evaluated as R-&w s é‘%‘ O , and C enlarges to
cover the entire half plane. Because of the large magnitude of
2 in the denominator near the real axis at Rz 4@ , and of the

.."r)w .

factor @ , that vanishes when h" =2 @O | the fourth of
these integrals vanishes., The first and third give the Cauchy
principle value (which we denote by P). Thus,

_p W) a4 AT W) =2mi) O,
Al-7 e

o

If there are no poles in the lower half plane, separation of the

real and imaginary parts gives:
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(=]
(), « _ _ | (i (4') J#’
Y (ﬁ')—";}fP SU,()
Jf-j’

; /"’/j')alj
W' )(z‘) =+ —-— f Sy

and q’l’nand l}’(‘) are said to satisfy the HILBERT transform

63
and ( )

relations. These relations hold true for any analytic function
having no singularities in the lower half complex plane, and
whose integral over the curve C vanishes as R—> €0 . VWhen
applied to magnetic susceptibility, 7( = X’-ij”, these are

known ag the KRAMERS-KRONIG relations.



45

D. COHEREMNCE (INTRODUCTION AND DEFINITIONS)

The result of the superposition of amplitures according to
Equation (50) or (51) is, at least for a sufficiently short time,
a sinusoidal function having some average frequency and complex
amplitude. In actual cases this average frequency and complex
amplitude changes with time not only in a regular way which one
obtains if the components superposed remain fixed, but also
because the set of oscillators contributing to the field will
vary in a random way. If the frequency and complex amplitude
do not change appreciably in a time Aj' , we refer to the signal
as having a coherence time of A* . The coherence length is the
distance the wave travels in the coherence time: A£= CAT . When
a screen is illuminated by an extended incoherent source, the
fluctuations at two p'oints on the screen will be correlated pro-
vided that for all source points the path difference does not
exceed the coherence length C Aﬂ' . We are thus lead to the
concept of a region of coherence around any point in a wave field.

The physical quantities that can be observed when random
fluctuations occur usually involve averages over periods of time.
The mutual coherence function, /7 , and the complex degree of

now
coherence, ﬂ)" , which wepdefine, are the important parameters in

many experiments that result from averaging over time. For the
fields W(P“f'.) and W{Fé)jz) at points P‘ and 'PZ in
space (or at the same point but with different optical paths or

past histories denoted by ﬂ and 'Pé ), we define:
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F(RRAL) =T (RET) =0 = GEERL)Y
fm 1 [ i
= T;’Z) 57 W{ﬁz}f@éjj(% 75&3}
~-T

where e A7

In practical caleulations, the field quantities can be defined as
zero at times outside the range 27 . 1In this way, the limits of
integration can be extended from =60 to €9 so that the FOURIER
integral theorem can be used. In most cases, it can be assumed
that the ensemble is stationary, which means that the average

does not depend on the origin of time. That is

T, (7Y = V(R AP (R, 3
= LWER,TIVI(R,0D 5 | s

stotionary ensemble

The mutual coherence function is called the autocorrelation
funetion when.Fi:jg » and the cross correlation function when

T% and F% are different. The mutual coherence function at a
point ?3 is proportional to the average intensity. Some authors,
in fact, write

HRENING]

s (66)




Here we .sometimes put

M (PR 0) = M A0)=T0) =T (0,

The complex degree of coherence is then defined:

ENCErG

VI 03] | 17,000

(67)

(68)

Schwarz's ineciualit"y, f’%\ggffjg‘adﬁ .;>; \ J,F 34:{"

then guarantees that

< \}'2(7')\ <

(69)

47



E, INTERFERENCE: YOUNG'S EXPERIMENT
Consider two signals W(Rj') and W(PZ j’z) with mutual

coherence rTZ (‘T) . If these signals are projected over equal

optical paths to arrive at a common point Q, the total signal at Q

, by the principle of superposition, is:

W(Q) = W(P):f';) + Y(FR ja))

so that

T(Q)= <W(Q,i) W Q4>
= CURH VIR A + VR V(R 1D
+ YR VEBRD + YRRV,

The imaginary parts of the last two terms cancel one another,

leaving

T = o) +1;,(0) + 2 Fe [} (7)

!

or

(70)

. 2 47 m ?@ .)72 (7’)

®
This result is quite general and points out the importance
of the degree of coherence for determining the intensities in

interference patterns.

48
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Young's experiment illustrated in Figure 8 is a good example
of the use of these ideas. In this experiment ))72 l may be less
than unity because light arriving at Q over the different optical

paths F% and Fz was emitted from S at different times. 1In fact,

Figure 8. Experimental
~ arrangement for
Young's experiment.

-we expect that if the difference in path length & (%é'.},) is
greater than € times the coherence time of the source, visible

interference fringes will not be possible. The visibility of

fringes is defined as

/Imax - IMI/}
Imax + -Imin L

Cz//

11




‘The general appearance of [ can be obtained by combining Equations

(52) and (64), which gives
fenloal
T

Ham-ovl] Lanfhi o) oot

falit)=55& | AL e c e dud

=T -0 -

where 4 :ﬂiw%j and 4+ b+ 1

* '
~A20(Pv')#
The last factor,@ 5 is a rapidly oscillating function of

time when 9/ is appreciably different from ‘jJt; and the time

integration is zero for these conditions. If 4 = ﬁ/, , the
integral over time gives 2T . Thus, very nearly
Gi? () Q /4296?'((@'@”%{5})) 2TV
ﬁ y [ & ]
f;; (7’) = / 2 & dv 3
- &

where ;%‘2@&% jZQ - l@ = T

If the amplitudes ﬁi gfg;) and 532 {g;) are appreciable only
in a narrow range between §j - f%%;’ | and Ej + %%ﬁ’ , it
is convenient to put 4/ § o+ éJ'l , to get

DT DT o5 v’ @ﬁswﬁl
92 (1) = e ™ Fj @,fy%y}f’? () e e

3

2ATPT

¢

¥
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In Young's experiment, the' quantity o is the time required
to travel a few wavelengths, and has a typical size of _E.:- = "’::'-5 .
A typical magnitude of 27 ¥'7° is then ZITQJ'/;] with
an extreme value of T (% . If W(%)(((] , so that

2 ¥'7  can be replaced by zero over the range of integration,
the quantity in brackets will be independent of T. 1f CP' = cpa
it is also a real number. For @' =@, and a very sharp spectral

line; and' a long time coherence of the source *
-ior
ﬁz = constantx &
')‘ .y wr
12 = € _
T(0) = I, + I, +2/IT, ¢ (BT).

1t I = .2; , the visibility becomes &V = cos(&-l?’) .

1f J7 arises purely from a difference in path lengths, Aﬂ,

V= cos ('277-%-4) .

4 P(T) @»@'@ T

b)

T0)= T+ L + 203, Alr) cas (37 (7).

More generally,

Il = AlT)e

so that

Other. examples of interference with partially coherent light
will be considered after we first examine the field equations and

propagation properties of the mutual coherence function F' .
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"F. FIELD EQUATIONS FOR |

w

If the complete frequency spectrum at a point /7 in
space of a component of field amplitude is known, that component

can be found from Equation (52):

eo_, -2yt
Wi, #) =f W(/?,ﬂ)ed dv, 2

o
In Equations (6la) Q(%W) and @(/?, LU) must now be regarded

as functions of position. It follows immediately from these

equations that if W(’f) satisfies the wave equation, so does w(‘) .
- .

Consequently, W(/f) j') satisfies the wave equation. Operation on

Equation (72) with vg gives

or Soo - ~L2TYE

If this is now multiplied by @ Jj and integrated

between the limits =g +p +e0® , the Fourier integral theorem gives
ed

J (V24 %) V(A ) S (V) Jy =0
0

Consequently)

(vz"% Je? ){;’ (;;.: v) =0 (73)

&

o4
For polychromatic light, it is strictly the Fourier transform, g/ ,

of transverse field components that satisfy the Helmholtz equation.
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The mutual coherence function,

r‘( ,r,) £) =Tl rrg,t) = (A, A,7)
satisfies a wave equation. If ,-rz is held fixed, and we operate

, 2 .
with V' the result is

V2T = ZLTJ%[V,W(A?,},)]W*(/Z,M dt

Since Bﬁw | a-&w
- ] .
2 ) z -vc-'a_ ---a--;.2 = "’C'Z. 72 we obtosy

/A I Sy -ZT,_ITW{ :l'-r?)‘,l/(/"a,f)ﬂ”}

Thus, 2DYeE ¢

2 | 'az - =P _
(‘7} ~ne) [, (4,4,7) =0 (74)

The subscript F2 is used to emphasize the fact that one point

is held fixed. In this equation r;Z propagates accdrding to a

. —
wave equation and takes different values at points /f; and time
differences 7 . Because rapid time variations of light waves can

not be observed, this description in terms of T = ]; —jz is

3

especially useful. If point /f; , is held fixed while ?; varies,

a similar resﬁlt is .obtained:
2 2 2.
(Vz ""C'Le ‘5;2,) i;, (/T,/fa'r)- O (75)

The frequency spectrum of F tan be treated in the same way
A%

as that of w . 7 is defined through

D s - =P -“'2}7'1}7‘
\"‘(;ﬁ;ii’r)::_fo F(nAaYe  du '(76)
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By repeating the procedure used to obtain (73) from (72) and the
* [a %)

~
wave equation, it can be shown that both r;, and - rkZ

satisfy the Helmholtz equation:

(‘352 + gez:)figz(;ﬁl};i9~: C)
(V2 +R3) T, (AAY) = 0

a7n
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G - PROPAGATION OF MUTUAL COHERENCE

If use is made of the fact that f' satisfies the wave

equations (74) and (75)) the mutual coherence between two field

-5 -
points o7, and /’.2. can be computed in terms of the values of r

Figure 9. Definitions of the various
vectors used in finding

F(P\Pz'r) in terms of its .
values r(Q’Q"r) on source

on some surface # . The solutions of Equations (74) and (75) can
be expreésed in terms of the sources which leads to Equation (4D) .
The Kirchhoff surface integral representation of (4D) is:
7,0 {) Al A
i) > L ¢ oA TYW0) R Yo R Py Al 48’ (76)
NEw UL TR T TR TR e
s R ¢ RET
-

Using this equation, P(ﬂ)(;g A 2’) j’z ) can be expressed in terms

(")} >4 > (#)y >4 =
of | (/‘T,Ifra, A j'a_) . In the same way | (/f, A A f',,)_

Y
can be expressed in terms of r‘ﬁ)(;%lﬁ"a j, jz) . These equations
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are:

A, > B (4 1.) ‘R (d) />
Y H)""".-if [,r GAA 8 iz
1772 1) L,L ) R; t (77)
-Rar "”(f‘?»’fﬂ”») ds,
Ry

——RGEATI.

; aj, 1ol #, ?ET
an lﬁ,)_b -
F"')(,‘%""},h _ S LN y:eg f;m 2024
) A - R, o
_I\z ar'“(/ﬂ,/ﬂ,il’*‘)l ész (78)
é_;fz 2R ) +, RET

Substitution of (78) into (77) then gives the desired result:

M (37 4 1) =L;..'...H45Jsz{:%'\z’(ﬁ;~v;r)
';72 a Jo !

R, R,
r | Ezr ) A xyl A~ !
+ﬁf2 (ﬁz T2 mz)~ﬁ?g[ﬁ NV, I +f n|°vlr]
/af" "35"

'ﬁ Zaj. -CR% 'Bi‘z
+ ‘fﬁ.( 7 ) )} 9)

p\ B#z BOTH Jhgrj’g
RETARDED

where f" on the right side is.

(90)

and the gradients are all source gradients.
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The subscript "Ret'’ means that the entire expression must be

evaluated at tlmesj - and jé = Thus,

2)
[r ( : j’ L‘. RET r (?H‘z’;’t: f’ j"?&z’ (8D
4, RET

Again it is convenient to define
7= 4 -—jz , whereby

2 .2 2 __2
oh = BT and o, = T >

and to make the stationary assumption that /“”) is independent of

(82)

the time selected for beginning the averaging process:
(<) { -
[r A 4 fz)] beh © =GR T &E@), (83)

With these substitutions, Equation (79) becomes:

Mgm: ”gs 18, {aev,'(v’w:'v;ﬂ

ﬁ% ﬁ&
P ;ar’ nvr'+znV;V)
"”‘5"5%(\%%’;— ¢z 272 (ﬁ AURE

r (34)
) 3 /é’” fﬁ T 3 }
+-£ -V 5 ﬁ”‘ V57 T ( RET

where

A A
§2~:: /Z;%;R: 2206/ = j“’ﬁ”(r¢ l'a/ _ R ﬁa&) ’ (%?5;)

<
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The methods of treating real signals that are summarized in

Equations (60) and (61) can also be used for r . For this purpose, we

put

HE

FEAe) =2 j F AT e 4y
Ind “"'"276/
P AT = Fmﬁﬁe =

Equation (84) can then be multiplied by 2@""2]7- and integrated

from=-ed Yo @ . A parts integration can be used where derivatives
with respect to P occur. If we assume that ' ‘5‘;;: have zero
values when T = 4@ oy -0 52 condition we might call "the

impossibility of perfect coherence', the result is:

(84)

R| ?2

R, R,

P (A f-?:z-ﬂ) = (‘7%)&( fJS,JSZ @J‘K(Rr%\) ﬁr’v;l(ﬁz‘vzlﬁ)
o I |

+p (gt IF - BART (kr)

(37)
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H. FAR FIELD SOLUTION

If F?. and 732 are very large compared to the dimensions of

the source, it is convenient to put

R\ Rv + ﬁm (gg)
and Tal f{a + ‘/302

and to let (9,)43,) and (62)@2)-1;? the spherical coordinates that specify
-
the directions of the vectors F?, and FH_ respectively. After integra-

tion over the small dimensions of

—~3 —
_f%Ql and Jﬁ%z , the various

terms in (87) then have the form
LK (R~ RP)
‘Tﬂ%&@%%}e

(Re)" (RDY'

The gradient of this function then

Figure 10. 1In the far field
it is qgnvqglent
to put R * R,° -a-}z,)
where ?§° is a
constant.

becomes:

)
' T=4V T+ (]?fi"w TR 29 ?‘mén 3@,\7, .
J‘K(R\O’RZ)

— ® 9’ ?i + ©’ d1e
= ,LK'N? (14 Kg") +Ro 26 Rean 00,] (2 (R
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o (]
. As Ta, and 722 become large, the first term dominates the function,

so that

Far Field ~ . n
~V T =+ P =iKkR T (89)

“Vé,ﬂ: -f-v;éff:;: -jKﬁgF

?

A ~ A A
o ) 4] . .
where we have used R = R. and RZ v PZ . In the far field it
is not surprising that the space gradients, or changes with distance,

turn out to be along the direction of propagation.
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I T’Ta PROPAGATION IN AN OPTICAL RESONATOR

In an optical resonator, or an iterated system of phase
transformers, the light is generally directed along the axis of the
system and has the character of radiation in the far field of
another source as illustrated in Figure 11. The far field Equations
(89) can then be used to compute the source gradients in Equation
(87). With V, /“’”’{,;;",{é _g) = 4K D r“(;; /{;, 'R)

and FIA AR) = -s1h P (A ')
we ob z‘am

AR o) dK(R-Re)
r(’ﬁ/ﬁﬂ) (L; )zfjc]SJS YA )@

{KZRIRZ q?z”"%ﬁ'}? 'VD%+%Z ) “}-ffz. (?0)
FiK([Rpge- RS - BB G- )
buhﬁW%’ ﬁ%?: fZ;LEF' éﬁ?J ? /& j&

Source

Figure 11. Illustrating the idea that light leaving
the mirror of an optical resonator (or a
lens of iterated phase transformers) has
the character of radiation in the far
field of another source.
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The same approximations that lead to the BASIC DIFFRACTION INTEGRALS

FOR OPTICAL RESONATORS (Eqns. 20, 21, 22), will again be invoked. Namely,

A A

A A A\ A A
n‘aﬁ‘: /)Z‘RZ :/)"A) -
il _ =1
As= F | Repc R

?\ - ?g_ = c:l except in the phase factor where

A
ot Ay = —,

Rectangular Coordinates

' /
Ri= d+ % (x+ ) % (x+4%) - i(x,x,’-&-»y,%)

R,z d +2% (% +45 ) +%(xf+{;1{z)- Tt +4:4)

Cylindrical Coordinates

- J ,
R\ J_}%f’z.(_%ﬂ ‘f:{—-ﬁcw(@’?}

?z

2 g’ '2.... 21' '-62
Jd +.2 + 2 fo lef_cw/éz )

2d )2

where
- o
g:/"% and g,:‘/"‘ ?l , and R&E, are

radii of the mirrors.

(a1)
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e
G

P S

P 52) =

where

I L 1=

<

A RE

g g

L0 (R I A R e AT )

g £ R
@{f’?a /;ZQ)J}%S;Q)S;’ e“l’ 4 ()+ I‘%}’\f@él) r’(ﬁ"ﬁz ﬁ)\

= =
where a reflection coefficient @{f?’ ﬁg) has been included so that

@ =D,
ﬁ(}i’,/ﬁﬁ) is the mutual coherence for the field leaving the mirror.

(92)
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- Ju THE VAN CITTERT - ZERNIKE THEOREM

_J._ "'f{JZT
If Equation (92) above is multiplied by 277 d52-  and

the integration is performed from @O -fa ed  , the dependence on T

can be recovered since

(= &

FRED = [ & FurEs e

This calculation is performed in Appendix L, where the result for a
Gaussian amplitude distribution of frequencies is given by Equation

L8. According to this appendix, if we put
> 2-3 ]
F(4") g(frz -A;") e V2 42

N AOE , o9
yAw

The result will be,
r-o

L 2T | iR =73
(ﬂ’,rfzﬁ’) - ¢ € f JS JS € C e {%C‘}W}F(’Ft )5‘(

( %ﬁ’)gd * 2/ 2maT

where

"}/'91

ﬁl"n

- 512 o)+ 4915 R") AR ees(l-6) - £ o tey- )]

ffactor} = | 42 RE(142fE 743%) 2(] +€_);(r-a).sza'

= [ =) & 52]°

A 5
= = - 2% T 32 =
8 3 , K2 ) Ko, AeATs

.
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Here it has been assumed that the cross correlations are all zero.

The delta f ; h ts el TTH T i fon i
e delta function then pusf{‘zﬂ/;’ Z A4 when one 1T1tegrat10n is

performed, giving

éugxr 43@509' 5!5 E\EM”] 4 f? D% cos{8-6,) f’to.s (8- é)}
vl et
Mliar)s (Wf)aﬁz/zm? ¢ {factor} FIFY)  (39)

The integral 1n this equatlon 1s

' = ] s [(ty=30)% + (g ))* €68 (6'+8)
j f};éf éé f‘ ar Q’“f {wgéw} F2) [95‘)

-) Aajz,é/@l,
w}?ﬁ’é‘ s i@%
ﬁ “Hac ¥ ¢
At this point we make the usual approximations

0<<l a(gé)a >>)9 so that {factor) = %‘diz
and 437” 3 SM?C‘%C:&%% ly long +het

T ol :
B éy ~ |

This last approximation simply limits the range of 7° over which

=13
the final equations are valid. Typically, %‘3‘3““{ = /0 ;.

&
S0 we are requiring T < é,v e . It is also convenient
ay 8

to put

- 2.
= g{%a”r:,}a ‘% (é?g'égg)

= distance between points ;? &. ;?%
Thus, ﬁa”f; = 2@1 Aig

Also, assuming that F}?.’) - S’ {f,,;i) | (94) reduces to )
) 2T (R9dia _, pa 2T 4 %@i{lﬁi@@ﬁi@ ]f}
r(E Ry = e et jf’ﬁ’jd@"é FL)
(y7)* J* 2VzmaT o o |
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if F?(ff’) is constant, the definite integrals

27 [ pplpos(6'+8)
e’V o dé' = 277, (3f’)

" __ &T(ﬁﬁ)
Ry ensa s

can be used to integrate this expression; to obtain

=2 _ BT A9Rdi2 .2 Rads
PF Vzm KT 47, J (%) [3', (T)

EQU? = e

2 Kadi2
sT? Var (E5)
where by, A
(/3 Vo -
(ﬁgJ} 2T Agkwﬂa 6379
-)‘ (7 ) (Kad;zﬂ.) c

._...ag,__
The function j‘;(ﬁ)/ﬁ is small except near 3::
vanishes when 3 - 3,‘3 3 . Thus, the distance between two

points required for an appreciable degree of coherence is d“)
given by E é:(;?f) (5’) < 3»83»

The frequencies present in can be examined by
combining

~ 4] i { T,

> T |
FGEET = & v, sV (R, 0t

o ,7‘
VR ) = g [T E ene™ iy

@ th it
ol pEn . L[ IEWE
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to obtain:

FEtg) = 27. dre” £ 14t “’)7 A “%z%wz T(Ew) Vi wa)

Since the averaging over j can be extended to very long limits,

gives
the first integrationja delta function, 8(% w,) The second

term also gives a delta function, D (_Q-M/,)

~d
Thus, there is no contribution to 7 except where .2 is a

< b
frequency that is common to both Q;!s’ﬂ M’,) and w(/f; wa)

-

The frequencies, $& , present in 7 are just those that are
P

~

mutually common to both ¥ and %
For the sun, the central common frequency is about %x’o

cycles per second)corresponding to ‘k = )0 W‘I . With

E 3,009 radjians,the distance over which an appreciable mutual coherence

occurs 1s (C)(g,) 4383 3 /05;//2{0“(000 9) < 9‘33.3
df;) < (fu,eo'#)cm.
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K. RESOMATOR SELF CONSISTENT COHERENCE

The remarkable thing about the Van Cittert-Zernike result is
that a non zero cross correlation is obtained starting with a zero
cross correlation over the entire original source. How this comes

s s . . I
about is illustrated in Figure 12. The field at point P, can
be obtained by integration over the source. Since the field at

O
PZ depends on an integration over the same source, it is not

surprising that they are now

P,‘”" N

Pz(n-m

ete,

Figure 12. 1Illustrating the improvement of mutual
coherence as light propagates through
an iterated system of phase transformers.

At the start (8,8, 7’)22} when &, # @a,

but is different from zero over a short
range of 77 when &), = &e
According to the Van Cittert-Zernike
theorem [Y(RMAM7) is different from
zero for short separations of the
points P;(i) and )‘?é") .

correlated statistically. An increase in temporal coherence would
also be expected because the correlated fields would give the
greater contributions to fields at P' ) and PQU) when the
integrations are performed. Thus, the statistical correlation

should improve with each iteration. If we assume that this process

converges to some limiting value, eventually
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T (ROped = e m(pafe ), (59)

where E is a complex constant.

L]

Using Equation (92) to express ’77-!-) in terms of [z leads to the

integral equation;

' g 22l 111
Er‘y’@)j’ﬁﬂ)“ $(ﬂf ‘ifjds,észe < (|+L’Kae'2)r f

=49 (ﬁ% ﬁ") + 553'93' %ﬁ’ %)+ 2 ﬁ' cos(6,- 6,) -ff ‘e0s(6/- 8)

99.

This expression should be compared with the single pass mode
equation developed earlier. The requirement for the field to repeat

itself was

v (powdze W(f@‘“)

N+ (100)

Using the basic diffraction integral of Equation (24) to compute
o o

wﬂ’#’l in terms of W;, and dropping the subscript #1 gives:

Mede eﬁua%ién

Lamn "

J
eVipow) = — Ve e

L .2? g a+ ’a'.,. ’605(5"9)]

o:

i

(01)

For the case of rectangular symmetry with 3': O , the focus

condition, both Equations (99) and Equation (101) can be solved.



——
A,

70

For mirrors, or phase transformer?’of dimensions 24 X Zb)

we put
= X, ()Y (4) X, %) Y, (4)

Ex, €xz €xz €Exy

&

E

Qj c G0 ‘;7'(49)
and €
then reduce +o

a
)({‘x') — l V¢ (H”%sz )eﬁg(ﬁa'flz 'AZ"XIX,

X)
-a

&g s k2l SRR 4 R

(9% 7 X,0x) 4%

= &y €y . Fguations (99) and (121)

) = = = A

€xz (47)2d?

=4
a 4@ ,
X
%(x) =L [wh A%d @?y 7<%(’f
= m’d ,

? .
and similar expressions for thefy S with integration limits
changed to w b +o +b

The solutions of these integral equations are the prolate

spheroidal angle function which satisfy:

\
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({“;3 ) (C{ ﬁ) f € Gﬁ <@<”&)€’A

Qg”ﬂfi:ﬂ( 1)5 (@(ﬁ’) J v %A}da

!
The change of variable, X, =@ ) 5}75/ X, = ﬁj-

, reduces

the first of Equationg(102) to the form

¢ (%) |
X, (at)= EL | J e ° X, (aa)da .

- )

Comparison with the second of Equation§(103) then gives:

=1 Kxa® - €
247 R (K1) =

d 5 %E/mmm and

X, (af) = S, (%ﬁi 1) .
X‘ () = Sén (%ga; ‘%)a ’

Combining these results,we have:

9nd (/03)

Rectangular symmetry. Resonator self consistent solution

f:i?é;ak’ﬁig .egg.sz’} 2 ((’ﬁ%?”)éﬂ(%ﬁi%) Sm{i? ;f)g ’ng 2 )S ( )

> '_fir '?,‘j)g!)
oy P 2 2 o AT [k %ézéf E)
éﬁmgg;? =16y ;%ﬁ(rf }I} ( i {)@ (é“ ;)? (£ b% (141K

CFn

vext page

Frr €l )
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ka® L b /’@a

X 4w eonst ( w) (,,,,,. )

‘;l” ,(rgw) = (eonsi) O Sem (2,
b RS g2

e 394'";7’”7"’/ (%;a ’(Lf%éz /> whe e 7S
mn o on V@ > 277’&

Ka®
If‘ ’:T’ is sufficiently large, the angle functions can be

replaced by

Kot ?Jm J (%;}M )
S@ﬁ{é mg f; ?nﬁ; (?F ) (46F)

as explained in Appendix F. Actually, this approximation is
rather good even for Fresnel numbers,?zng“ , as small as 3 or
4, Thus, for each frequency .{2 and for the lowest mode, we have;

LK (e, pe |
(Eﬁgﬁ) ] (f@ﬂéf) - 29 (ﬁ Z ) (105)

S

o000

<y

fa4
The total |° is then obtained by adding the ones together for

each frequency. If a Gaussian distribution is assumed, and this is

“d 2T
multiplied by 2%% o 52 and intergrated, the final total

mutual coherence function is obtained: '
& 2,252 1 '
Jg "’f) - A ~liEanl ~5EME) -uﬁaz}
@@a@ j ;ﬁ’;fﬁ?t .%y éf e,

&

(104)
Cont.
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This integral has been evaluated in Appendix L where it can be

seen that this gives:

T gy (1R
) 2.7 ’*‘zgd (ja %ﬁa) [ ch;{? J :
Oe“’/g/@ 2yzmaT 'f‘ c |
+ ';é? 2) ‘3
- A _,,4527’ fcd (zﬂlmfz e - ”ng‘? /33(
T €
Z ‘
IEM T ) GRIIN
- \Far

n mmmmsmmﬁpay
Sed* (13'7')

€ c ,

Putting ﬂ_ga é@?‘ C.P)g'%’ﬁz R (f’ %‘Jéa)
’4 7[#- zg{@,éyl &R ) ol

aew ff; ’T) - 2;{“%’7 f f% L,.
ﬁ wﬁgg@; i{/@a%/% ) .ﬁgﬁiifi)
i &
95@@ f " 2 2067 .

So that the complex degree of coherence is:

> >
%@ge(ﬁﬁ 7ﬁ> E r;e@e( f a'T B

J V'eses .2
= Ypapthtt A
g’@.ﬁ.,? ¥ ﬁ
\ é?j sl - ‘{‘Ei.i"‘g’g j — a5 (3R 94 (an®
v (Rh7) = e e

i\;@gé
)
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If light of equal intensity is used from point$ ﬁ 3“/@2
to form an interference pattern, the intensity according to

Equation (70) will be:
T & |+ Fedp,

and the visibility will be

UV = fﬁé)jg (7)

Thus,

T \2 @@?
- (= @’j; zf, .%sz
9/ e m?’)ﬁ ST A SE‘:Q_"?“’&%J% '@a(ﬁgjﬁ"]

fot)

The second factor does not fall off appreciably unless it is

larger than say ‘/g . Withﬁ :ﬁ » this requires:

f < Vd (al) 5 (107)

a condition that is easily met in lasers. Typically, jD{ ] ci??)
whereas C}f’v 190 e ) and i‘ug ~= 10,000,000 em. In fact, it
is probably not possible to observe this term using laser radiation.
It might, however, be possible to see such an effect in an iterated

system of phase transformers that is used to filter white light.
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The last two phase factors in (106) are small for typical
lasers and are of little importance. The result can be
summarized by stating that the degree of mutual coherence is
essentially constant over the cross section of the laser beanm.
Finally, it should be remarked that this analysis did not

include an active lasing medium. The effects of such a medium

.are well known. Basically, the frequency width per mode in such

a regenerative oscillator is many times smaller than the frequency
width of the passive resonator. Most of these effects can be put
into the results of this paper simply by using the much smaller

value of AW that one obtains with such a system.
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CHAPTER. VT

PRACTICAL 1.ASER OPTICS

A. INTRODUCTION

This chapter is primarily concerned with the basic laws required for the
practical design of the laser resonators and for determining the propagation
properties of laser beams through optical systems. The fundamental law of
propagation of Gaussian beams was obtained by Boyd and Gordon9 in 1961, An
improved version of a graphical solution of this law suggested by Gordon15 is
given for the first time in the present work. The rules for image formation
follow those given in a review article by Kogelnik and Lil5, and an earlier one
by Kogelnikl6. These_rules include image formation, curvature, and ray trac-
ing using the ABCD law and ray transfer matrices. These ideas ﬁaturally lead
to the topic of stability and resonator frequencies in optical resonators,
where additional information is given by Gordon and Kogelnik18 and by Boyd
‘and Kogelniklg.

The image rules according to scalar diffraction follows the treatment of
Collins20 and of Born and Wolfa. The conjugate relations for the mutual co-
herence function between points in the entrance and in the exit pupils for a
real entrance pupil are given in this reference (4). So far as this author
knows, this same result for virtual entrance pupils is devéloped here for
the first tiﬁe, where there is a slightly new twist to the development in that

integration over an infinite principal plane is not necessary. The conjugate
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. relations for mutual coherence contradict the commonly believed idea that the

degree of coherence in a microscope slide is identical to that obtained with an
incoherent source filling the condense lens, and suggest the old idea of focusing

to a point is the way to obtain spatial coherence from an incoherent source,

B. LAW OF PROPAGATION OF A GAUSSIAN WAVE

Consider the confocal resonator shown in Figure 13 with square mirrors.

; .
2 . £ :

Figure 13. A part of the confocal resonator
geometry used to derive Equation (lO??

The modes for such a resonator are given through the integral Equations 33

and 34. As shown in Appendix F (Eqn. 38F); thé Spheroidal éngle functions are

the solution of this integral equation, and for even a moderately high Fresnel

number, these solutions reduce to the Hermite-Gauss functions of Equation 46F.
Starting with the Hermite-Gauss function fields on the léft mirror of

Figure 13, the.basic diffraction iﬁtegral can be used to obtain the fields at

a plane P. In so doing, Boyd and Gordon obtained for one transverse component
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Y ”.?r?»!é) /Cé)’% J}Q [M?W ? (g;‘ )F(”“H?
%mt =0 jﬁ/)“}‘é NEDIND R

' 2

6 2
where e = 2T (fé)
mirror dimensions =

f)?,: _xz,_% ﬁz
{= 22

.
dom @ = 77

2.
i eI )+ e S (e 30}

aXa

This equation applies to the wave propagating to the right in Figure

13 and is valid for the wave that passes through the right mirror provided

it is multiplied by the appropriate transmitting factor of the mirror. This

2003

equation is also valid for the standing waves inside the cavity when &

is replaced by Sfr} 5, 3 , .and, as a consequence, provides the basis for

determining resonant frequencies, The law of propagation for such beams

follows from this equation. For the m=0,n=0

the beam width is dictated by the factor ){P {

mode (the most important)

«%!@2 }
DI

If the beam width, Ww- , is defined by the V& value, this factor

becomes EXP é““ (%)23, so that

W e = %(wg%)

(108)

The surfaces of constant phase are given by

(107)
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b

c _ 3 (b
T L

The dependence on g through @ is very small and can be neglected, giving

2
E‘ZO ~ H‘ g?. """" (109)

2
which has the appearance of -_P/ZR

Thus, the beam radius is

o (1+83))
R= 2.6 (110)
° - .,@—& —x';}?ﬁ

The cross section of any Gaussian beam is therefore specified bye "‘U’ae 2R

and is characterized by the spot size or width, @5 , and radius,ﬁ , at

any point 2 . Equations 108 and 109 specify these parameters as a function
' LAW OF PRoPAGATION ) GAUSSIAN BEAM

w® :_’%El + %z] (///)
deRe (I4+42%2)b

These equations have a simpler form when expressed in terms of values at the

of £ , and are the

beam "waist" where Zz 2, , Rzaoo, and W,= !}% . This last result can be

obtained by eliminating g from (108) and (109) which gives

w2 b [H" (%Wa) } . As K-=» @ with, W finite, %“@y‘g;
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“Elimination of ”5" in (111) gives

Law of Propagation: Gaussian Beam

7\%'3'
w? W[’+w% ]

= Z[l + (%2)21

2 w %

or

(112)

W,

Z =

+ ('ﬁ*wa)

with the additional useful relation

WZMI{;Q':: (%)2R§

By defining, _L = L _; A
- R Tw?
can be expressed in a single equation

, the law of propagation

Law of Propagation; Gaussian Beam

9 = q,+2

where (113)

! ) + A

vmrds oD

7

which is easy to verify by separation of. the real and imaginary parts.

|
3N
|
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C. GRAPHICAL SOLUTION

For a graphical solution of the propagation law, it is
convenient to measure distance in units of A and to introduce a scale

factor 'R through the definitions:

._..a,R _ ot
C= Fe 23

wz a4 (g;“, ) n= scale factor
- @(.?i) ?f; A
= A = ae

With these substitutions Equations (112) become

Law of Propagation

W'-?VE/QD;?*(%%ZJ W@:ﬂg
¥
[3 n %r;Yi 0 ;é:_ 3 M

and the law for change of beam radius for a lens, == E i 3

becomes

(114)

(115)

(1106)
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Equatipn§(113) becomes
P=4£A -4 and
- 2¢C 2W ’
Law of Propagation
) )
P Pe -
at the beam waist;
D=0 5 (3::Cﬁ{) W= VY;

Combining these last equations gives:

¥ |
T = 2iWe
2C 2W

and has solutions where the complex number, U + 4 AF

equal to that on the right;

ULV = X+LH
J
where %%A'/U: T - 7 and ?-‘fb&.?
2¢ 2w

Separation of real and imaginary gives:

2ew® )
cr+W*

-
oy

u
- and
2WC©

CHW*

i

(117)
+ A
, on the left is
(118)
= A+ 24 W,
xX=A (119)

/y: ﬁWb
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The first two of these equations immediately give the useful

relation

J——y

(120)

- € s)epe
w

Elimination of C and W respectively gives: Z{z + (Af' W)a’:" Wz

and (u"‘C)z"f”ﬂJ'z = Cz . Thus, on the (74,/”’) plane)curves of
constant W are circles of radius W with center at (O) W) , and
curves of constant C are circles of radius )Cl and center at (C, O).
The solution of the propagation law is given where a point (X, ’81) = (/.),ZWo)
coincides with a point on the [W,ﬁf) plane, each of which now defines a

value of C and a value of W.

U-nr PLANE | (121)

%2+(M~W?23 sz. 3 constant W ore
cs'rcljs: "
Poadius =
Centey ot (QW)
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(%"C)a-%/v‘g:QE y Constant C
are circles:

Radius=1¢)

Center 2t (C,0)

X-4 PLANFE

213 A 3 g = ZWo
Aetion of 2 lens

| ®
I S S YN
- 9 old new
Chew Cod F

The simplifying feature of this solution is that, as the wave propagates,

the point (X, *9) = (,Q,)ZWQ) simply moves to the right at constant distance
'2, WD from the horizontal axis. An auxiliary scale for the

plane is not necessary, changes in A, are in the same units as the radii
6f circles and can be found from either the horizontal or vertical
scale.

The chart thus proposed for the solution of actual problems is that of
Figure 14. Numbers have not been attached to the scales because their
choice in actual problems is dictated by the range of beam widths or

o‘i‘ ) [/
range®Poperating distances A one wishes to consider.

(121)



Negative & : PoSITIVE (-

S

Figure 14. Gaussian Beam
Chart.
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In Figure 15 line ﬂo ﬂ3 describes a beam of width W = ¥ and

radius (= -9 at Ao . As it moves to the right the radius

approaches = QO at A] where it has a minimum width of Wo--'-l . The
poshrtive and ,

radius thenfbecomes smaller until it reaches AZ . Beyond AZ. the beam

approaches a plane wave as it progresses toward the far field. The width of
the beam gets continually larger throughout the journey beyond ,4' . The
trace Bo... 83 illustrates the action of a positive lens of focal

length [z 12,8 inserted at B, to change the radius from (= +1b
to Cne;‘v"él’l with no change in YW . The closed loopsngQ’in Figure 16

illustrates a non=-confocal laser cavity. As an example of the use of this

chart, suppose we wish to design a laser with the following specifications:

. -3
one flat mirror; one curved. AT 10 em, \
fields same as confocal

Beam out of +lat mirroy

d= 100 em tbetween mirrors

beam to be expanded b&[ 'FQC{DY”’ZWith lenses and

made parallel all in a short distance. .

|

First we find the appropriate scale factor "a'':

Distance ore m The order -g/z‘goo F 200 om
g 100 0
corvespnding to b o frle > (.lto.z)x/o”a




Saa RN

T

Figure 15. 1Illustrating the

variation of width
and radius of Gaus-
sian beams as they
propagate.

=7

i

-5
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Graphic represent- i
ation of laser ‘
resonators, and of a
beam expander.

———
=
==
% ;
’,53;1" oy ; ; I~ N ‘\ ‘ ) /22““'-*-\, / ” -,) Dy b & 7 - T
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n
1 _1n

A convenient choice for "a" is /0 , which gives (from Eqnsl121) the

correspondence: ( )
w‘ -—@ cm. a - D—
30?5' - ,

R=200C em  f-200F (122
2= Jo0 A em

5

The curve Po P, P«a' P3 -y ef'c, of Figure 16 represents such a laser.*
“At P' , a distance of A= \ (d; 100 M) from the flat mirror

- » : . - ! - and requires a mirror with
at g= 0O , the radius is C..l (R _200&‘”\) 4 -
focal length fF = \/4 (.F = 50 m) to change the curvature from + to -~
with the same magnitude. This mirror is placed at P, and moves the beam
character around the constant W:l curvea;o C:--J_. The line%?b is the

S

return trip to the flat mirror.

Actually, the curved mirror could just as well be at ?3 in which’

case 'Pb to P. also represents the beam transmitted through the flat
the ovipui ' '
mirror. A negative lens has been placed at # P, which moves us to point
A! o The reason is so the passage from one C curve to the next can be
made in a shorter distance, A\ to AZ . At AE‘ a converging_lens changes the
curvature to (= . At point Ag; we then have the desired output beam with
W= ? (uf; .'353) and R.‘: @ . The focal lengths of the lenses at
- - ’ 4
Pb*’ ﬁb and AZ are %;-%(%:-325@% 3}){' %“7&35’(%2'755”’)) Q”J ’% 1
Jdre 35 em gpart,

Both this and the graphic solution due to Gordon have the limitation
of not having all possible points contained within a closed area as is the
case with the analagous Smith chart for transmission line problems‘. In

2.

both, the fact that W is proportional to tA makes it impossible to obtain

accurate solutions to problems with large changes in #J . 1In Gordon's

*Notice that the confocal requirement along with d=100 cm. from flat to
c d . 1 i = = = e )]s
urved mirror completely determines WO wflat 0.5 (wflat: 179 cm.);

Weurved = 1 (wcurved = .253 cm); and C =4 (R = 200 cm.)
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representation the —-L and == curves make up the rectangular
w C

grid, while constant & curves and -t curves were represented by

circles. The method here has the advantage of a linear scale for

distance, and a rectangular grid (’X‘)-P'?ﬂ&) s0 simple' that scales are

not necessary for it.

D. IMAGE LAWS: ABCD LAW: RAY TRANSFER MATRIX

RINE L
AV

PLANE

OBJECT |

e §) 4, =

/2

A
N
-

I\
S
g~

[
Ed

Figure 17. Symbols and sign conventions used with
image laws.

The usual rules of ray optics apply, but the sign conventions

used here are those shown in Figure 17, so that

|
'%: ?R _g (123)

PLANE

T

IMAGE




1

s J1 5 979 wi IR f2=0b

of the input and output planes shown, the first of these equations is

e

| : J

.

L
1 +4! ?z"dz ’F'

)

which can be solved for to obtain

2?, (I- %)+ (dtde -

91

, in terms

4%)

?2: F)g + (1-9F)

This equation has the form

_ %A TE
fz 2¢ +D

(124)

(125)

and is called the ABCD law. The values of A, B, C, D for this and two

other cases are given in the following

SYSTEM (

dgd
dtdy-
- 9%
,_d:@’z
d_dy_d) +
'-s ;ca; s

[(12¢)
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Equation (125) has another interpretation. The action of an optical

system can be described by specifying for the output ray both the distance,

_hz , from the optic axis and the slope, 0(2 , in terms of their

values at the input plane. From Figure 17 it can be seen that

o) /
M olp
F h OPTICAL Yhe

| SYSTEM S [

2l Nk

z|a 3|a
Figure 18.

The effect of an optical system can be described by
specifying the distance hz and slope ®2 of a ray
emerging from the output plane in terms of its

values at the input plane. '

- h . he
o gnd w2 a2
?l ?2
where both ?2 and 0(3 are negative in the figure. Substitution of these

values of ?l and ?2 into Equation (125) gives

h, _ hA+ B

D

2 ) h\e— + D

(128)

Apparently, hf(wnst)(h,#l te, B) ana oy = {const)(h,C + D).

Since, h' = ha when a": sz 2 0 for the examples, the constant is

unity. Thus,

h\ _ /A B ‘%)
oy - ¢ D %,

(129)

and (?: %) is also the ray transfer matriz.
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E. - RESONATOR FREQUENCY

For resonators) the last factor in Equation (107) due to Boyd and Gordon is

sin {k [ 1+9) + ,f-jgza L= (rman) )E-0),

where - _gbg ond Tom @ = n}g (130)

A resonant cavity is formed with two mirrors such that (1) each coincides with

a surface of constant phase, and (2) the phase difference between the two sur-

faces is 7T times an integer, ? . Thus,
: 2
(phase)z = %[% +£2 + %]"("?M*‘ﬁ)(%‘@z)
(phase) = 4, [% +2 + (mi_l {é@) ] ~Q+m+n) (2 -0,)
Then,
(phase)a —n (phase). = %‘n gives

Resonant Condition

2 (B S E- b S @] =g o4 0min) @ren)

(131)

where 22 _2% 1-4 -§
&% §°F 5 dm?rf % I Tome? T,

A confocal resonator is formed by putting
Z, z +5/2~J°2b 5 £ =
-% +Phw o 5 F-)
Z-2, = b = d .
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and leads to

Confocal Resonant Condition

-;2.5\'3 =2 + -52'& (;+m+n) (132)

Although small in comparison to ? , the last term is important because modes

with 1Y) and /] different from zero are not degenerate with the TEM097

mode.

In practice, spherical mirrors are used, and it is sufficiently accurate

to put, 5' )
- 2 Z 22 o
2,z Z,, J° (:+gz N
2/ $
- - P ) . = 220
2022, - 5 (Tﬁz) 3 57 5
Q”J 520 —gm = C’
In Appendix M it is shown that (@‘-@_‘) = s,n / §£ - gl vo that
2
the resonance condition (130) becomes: 0 +-§g )(H‘g

Resonance Condition :T EM%\? Modes

2d - g 4L (men)(@-92)

}“g #p — 1% d ______%l
/1}//\ R/\
! Note! Resonagtor is no-t

l

stable for the yveladive
sizes o R R, L d

' Show? . See, P93. -

wh:i s E: 292
voIrEE 2 R el

R
I R

<§g'§a>

(133)
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This result should be.compared to that given by Boyd and Gordon, and also

that of Boyd and Kogelnik.

All three derive their results from our Equation

(l30%)which is identical to Boyd's and Gordon's Equation (20), and all make the

same approximations.

The three equations have the form

d
Z=gtrlmn0,

where fa

Bell Sys. Tech J.
40 (1961) pp. 489-508
Boyd and Gordon's Eqn. (31)

is given by:

Bell Sys. Tech J.
41 (1962) pp. 1347-1369
Boyd and Kogelnik's-Eqn.(46)

Egn.

(133) this paper

Identical Mirrors d
. -) [ b-d \
7283 ( btd )

from whith we

obtam .
- ( b2-d )

€05 \ i d2

oy

The third column then gives: 3 éD =
and Gordon's equation in the first column.

result in column two. For identical mirrors, Rz:" Rl =

S

When substituted into column two; this gives =}
¢oS )T

1+(&/p)e

which agrees with Boyd

It does not, however, agree with the

1+ ()2
20/

)

b4 3«.-13)
pi+dr /¢

This factor involving @ makes a negligible contribution to the overall

distance calculation for resonance, but does show the conditions for lifting

the

}?757? degeneracy. The reason for starting with Equation (130) instead

of a pure Gaussian beam, which approximates the lowest laser mode, was purely
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. to insure that a term of this type would not be overlooked

F, RESONATOR STABILITY

Stability considerations can be approached through the ray transfer matrix
methods.

Most resonators are an iterated system of two phase transformers like
R
that shown in Equation (126c¢), but with CJ CJ ‘f )5D9J‘£ = 8

The ray transfer matrix of such a system for one pass is

2

- R) Ry
- 2
¢ D 2.2 .44 %_ﬁ__ﬁ 4d
R Rz RR; B R T %R,
Putting,

reduces this to:

q,~| zdy,
c D

A B 29
“Q’%Z;”(gg;gz” gfg@) +4% Zg'“!

# N
The ray transfer matrix, 7ﬂ , for A passes through such a system is:

T, = (28

The matrix of Equation (135) has the property, }?ZD“’E%{?“’ , so that
Sylvester's theorem can be used to find the product of this matrix with itself
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‘i’? times. This theorem is derived in Appendix N, and states that:

It Ap-BC=1), then

a g\ ‘ A dun Nb = oam (n-1)6 BAwmnd |
¢ D/ 7 0B\ Coawnnd Do @ = s (=08 136)

2
where poe O = %(;;H.p) -:-%:Trace,

From (13),

062 O = 2 Troce = 28 5.1

, b W . .
A real transfer matrix for §) passes can only result if €& & is between

-l and +I , which requires

N

0249 <1,

)
This expression can also be stated in terms of the more general é A s
- @ Y )

Stability Condition

O ';;<; 9,9, = ’{33’?)
0= C G| |

oy

A convenient chart showing the regions of possible stable resonators is shown-
in Figure 19, 1In this derivation, a converging mirror has a positive radius.
It should be remarked that a similar approach can be used to obtain the stability

condition for particle accelerators that use alternating gradient focusing.




Figure 19.

Illustrating the perm
optical resonators,
areas. A positive ra
a converging mirror.
by a point at the ori
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-G, RESONATOR SPOT SIZE

The graphical method of Section C (this chapter) is a powerful tool
for the design of resonator cavities. The relative spof sizes on the mirrors,
radii of curvature, and length of cavity can be seen at a glance and adjusted
to fit the desired design parameters. For more quantitative results, it is
still the law of propagation of Equations (112) that must be satisfied.
Gordon and Kogelnik [Bell Sys. Tech. J. 43, (1964), Eqn. (19)] give the

equations:¥

X5 5
o — . n ;)
2 ¢ (138}
« i
2d T &
Wi, = 4 I8
1//"9‘92 \6’2“‘;*‘\’3
n L0
for determining the radii of the spots on the two mirrors. Q.;ng grm
\Y NN of.2
e
\K’ : S.
. WY
H. IMAGE LAW FOR SCALAR FRESNEL DIFFRACTION g ;
N

The basic diffraction integral from Kirchhaff's surface integral repre-
sentation will now be applied to the lens situation of Figure 20. The fields

to the left of the lens can be expressed in terms of those on the source,'o% R

- —x}afds W( 2) e RIP+ 3 (P25 )

WL(P 27d (}39)

.

The effect of the lens is to advance the phase an amount proportional to

2
ﬁ2= 'Xa"’}"‘f . For a focal length ‘F‘ , a term —-'}‘E( )must be added to

2¢

the phase. The field at points to the right of the lens then becomes

,_,g, L p2 ) 7.
q,(f)_-/kf% ik [PH2p%(5-3) + 55 5 - £ A ] 090
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Q)(f@)" f“f,—f‘f R d
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R=d +5h (PP
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‘% .
=< P e o i 0g
LENS

Figure 20, Application of the basic diffraction integral
’ to the problem of image formation using a lens.

‘The diffraction integral can again be used to find the field at a point on the

1mage plane in terms of its values on the pr1nc1pal plane:

&+ +Po —2 f‘@)]
W(ﬁ@) zﬁzjés %@) il 2@(./’) fo =2
Substituting i:';g from (140) into the expression gives:
e 1. A/%z 2
f’@) ; ?PQ jd?dJJdS ‘#(ﬁ) illPro 3 ($43 )*2(-‘@%&)'&
7

P
o wmw@ XXp +4 4P
P wz%[ P 1

e , ()

where the extension of the limits of integration to include the entire prin-’

(191)
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cipal plane of the lens is justified if the aperture is large compared to the

beam diameter.

sinee fj(«k»)e = PSxpts x@

and likewise for the /g integration, Equation (142) reduces to

oo g2 e os IR+ (R L)
(//(/Dg)r';gLJSPW(FP)e | g(fhx@)gj_‘g*%@) (93

J
where use was also mdelf + , _ ‘L (/17‘ 45’)

P T T4 .

The remaining integral over the source, U;; , 1s zero unless

> _ P (1¥5)
SP =5 fo .
With the help of (144) and this last equation, the factor '%25- (% + ,g )
reduces to ,_f% f— . The image law then is:
2%

Image Law: Scalar Fresnel Diffraction

w <ﬁ@ ) = “E W@N (mnﬁ@) € (,’%Q}

o

212
-8

i -t
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I,  CONJUGATE RELATIONS IN ENTRANCE AND EXIT PUPILS

Equation (146) just derived assumes a real propagation of light
from the object plane U—P to the image plane Ué ,» so that light
propagates according to the diffraction formula. This result clearly
applies to conjugate points in the entrance and exit pupils of Figure
2la, where there is clearly a source plane G; , image plane O'a ,
a;nd where Equation (144) is satisfied between these planes. We now show that
Equation (146) is also valid for conjugate ‘points in the entrance and exit

pupils of Figures (21b) and (21lc), even though the entrance pupils are

J L. 4
virtual. In both cases, however, the relation ‘F + Q " f; is still

satisfied, but with .= =P = positive number.
e
Let LV (‘fa,)f?.) represent the field at points just to the left
of the principal plane. In finding the field at points in the entrance
pupil from the basic diffraction integral, the light must be treated as

though it has not passed through the lens. That is;

~ > SRR (Pﬁ")
Wfp) onE, chS ()e #lar (7 )] (147)

To obtain the fields at the exit pupil, the phase must first be advanced to

account for passage ‘through- the lens. Thus, fl | (,, -5 )21
r
3y ik (e o2y <R[O- 7 + 20 Yo Sr
P(3) - 2k [as i
el = 5 ) 45 V) e
The first of. these integrals (146) can also be written

] ~o g Q) = “g 203 2+°ﬁ'.]
<Q}OQ) _.Jﬁé ('ff}; 15 Ve H|-P N IORELE eI
U; (

(198

2
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Figure 21. Optical systems for which Equation (146) is valid for

conjugate points in the entrance and exit pupils. 1In
the. case of virtual entrance pupils of (b) and (c)

the approximation of infinite limits on the integration
over the principal plane is not necessary.
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. and with the help of (l44) becomes

1 R[G5 kbe- T
v QfQ) (‘) ke Giz)e i

2” a‘ ’ (
O-P

The integration in brackets is identical to that in Equation (148).

Substitution of the value from (148) gives

~ .;. —xktp"’foé _jk[@%- %zfg]

V(&) =210,/ e
% v g
whereby F; .£?§
G o2 gpAe e w ] | s
oN oV

which is identical to equation (146) for the case of a real entrance
pupil. In this derivation, however, it is not necessary to extend

the limits of integration over the principal plane'to cover the

entire plane.
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.Ji - CONJUGATE RELATIONS FOR MUTUAL COHERENCE

In each of the examples of Figure 21, the field at a point on a
plane (T-@ can be determined in terms of the field at a conjugate point on
a4
plane O?; by using Equation (150). It follows that [ ' between points on

sz can be found in terms of its value at conjugate points on Cﬁ; . One

application of Equation (150) gives:

R |
AK(PHO+ 5 Lan)

2 gu"’m_m’ nf; ) ‘F.
f; (fé;ﬁée )= @F(@ﬁ))ﬁ?n P2t @
T8
, o~
In the second application of (150), it is the complex conjugate, #’ ,

that is being transposed, so that

s PR 'F -m.;«}‘\’f?'&@"%’m ﬁg]
Pk f) = - 5 MU Jrfor) € :

The result of combining these last two equations is:

s . 2 _pt \
(@) P ,Q?) - (@) i%‘{ .E; (F@/ 82
r:w ( 12 :’Q") ow( é 5% @
> ’ Loyt oo )
where we alse hove ! 3 + 1A % )
> 2@ WP 2 |
So R = E A
S 2P (@) (P ~p (@
Soac = g)f 5 dtz =0 Az
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APPENDIX K K1
SUPERPOSITION OF THD GAUSSIAY SIGHALS
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Maximum Power-Transfer Coefficient between Two Confocal Apertures*

HarVEY N. REXR0OAD AND B. J. HENDERSON
Department of Physics, Florida Technological University, Orlando, Florida 32816
(Received 21 March 1969)

This paper discusses a modification of a maximum power-transfer theorem whose essential features
were developed by Alan F. Kay and by Giorgio V. Borgiotti. It is shown that a C; rotation symmetry with
respect to the optic axis is a sufficient symmetry restriction for the shape of each aperture, and that the
phase as well as the amplitude of the illuminating field can be included in a statement of the theorem if it
is applied to confocal instead of flat surfaces. The modified statement of the theorem is that a maximum
power-transfer coefficient between apertures in two confocal surfaces, whose shapes have C; symmetry, is
obtained when the illumination of one surface is identical to that of a confocal resonator having the same
geometry and operating in the lowest diffraction-loss eigenmode, and that the power-transfer coefficient, T,
is then related to the full-pass diffraction loss, D, by 7= (1— D)}, It is further shown that the eigenfunctions
of the confocal-resonator equation are identical to those of the extremum power-transfer condition, and
that these functions form a complete orthogonal set. The actual solution for surfaces of rectangular shape
is compared with results obtained for illumination with a gaussian-amplitude distribution. It turns out that
attempts to minimize power radiated into sidelobes by using gaussian-amplitude distributions have been

very close to the optimum solution of this problem.

InpEX HEADINGS : Resonant modes; Microwaves; Diffraction.

The conditions for a maximum power-transfer co-
efficient between two parallel planar apertures were
developed in an earlier paper by Kay.! The similarity
of these conditions to the confocal optical-resonator
mode equations was first pointed out by Borgiotti,? who
gave a statement of the theorem considered here for the
amplitude distribution over flat apertures. By launching
the electromagnetic wave from a confocal instead of a
flat surface, his results can be stated in a more general
way because the theorem then applies to the phase as
well as the amplitude of the illuminating field. The
double symmetry with respect to x and y of aperture
shapes used in this earlier work is more stringent than
is necessary. The theorem is derived here for apertures
having Cs symmetry with respect to rotations about the
optic axis. The theorem then states that a maximum
power-transfer coefficient between apertures in two
confocal surfaces, whose shapes have C; symmetry, is
obtained when the illumination of one surface is identi-
cal to that of a confocal resonator having the same
geometry and operating in the lowest diffraction-loss
eigenmode, and that the power-transfer coefficient, 7,
is then related to the full-pass diffraction loss, D, by
T= (1— D)% It is also shown that the eigenfunctions of
the confocal resonator equation are identical to those of
the extremum condition for maximum power transfer.
These functions also form a complete orthogonal set
and can be selected such that they represent definite
parity states.

The physical basis of both the self-consistent-field
condition for an optical resonator and the expression for
the power-transfer coefficient are briefly reviewed.
Throughout, the situation considered is such that the
fields at points on one confocal surface, located in the
Fresnel zone of the other, can be derived from those on

* Supported by NASA research grant NGR-10-019-001.

! Alan F. Kay, Trans. IRE AP-8, 586 (1960).
*Giorgio V. Borgiotti, Trans. IEEE AP 14, 158 (1966).

the other, using Kirchhoff’s diffraction integral and the
small-angle approximation. The derivation of the theo-
rem given here emphasizes the reason for the symmetry
restrictions on aperture shapes. Basically, the Cs sym-
metry is required to insure that the eigenfunctions of
integral equations that occur form a complete ortho-
gonal set and that they represent definite parity states.

It has been recognized for some time that the power
radiated into the side-lobes can be substantially re-
duced® by making the amplitude of the illuminating
field a truncated gaussian distribution. When the power
transfer of optimum gaussian distributions is compared
to that for prolate-spheroidal angle-function distribu-
tions, the solution of the maximum power-transfer
problem for rectangular apertures, the difference is
found to be of minor importance.

RESONATOR AND POWER-TRANSFER
EQUATIONS

The physical situation considered and the symbols
used are both defined in Fig. 1. The field at a point such

6]
y

&\ B xyd- 2} |
Al %J 5
r\’ F3

T /
|

Yt

Fic. 1. (a) The dimensions and relative orientation of the spheri-
cal (or parabolic) surfaces 4 and B. (b) Projections of 4 and B on
the planes ao’ and 84’ illustrating the form of surfaces that satisfy
the C, symmetry requirement.

3L. J. Lader and J. B. Winderman, Can. J. Phys. 44, 2765
(1966).
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as Py is specified in terms of the fields on the plane
screen ae’ by a form of the Kirchhoff diffraction integral
given by Jackson*

ALz

1 )
By(a) = —— / f X Ea (G} X — (1)

The advantage of starting with this form of the diffrac-
tion integral is that the precise conditions for which a
transverse component of E on aa’ results only in the
same component on 38’ are immediately revealed when
the vector operations are carried out. Because this is a
valid approximation for the present physical situation,
it is only necessary to consider one transverse com-
ponent of the electric field. For the ¥ component, the
fields on B8’ are thus related to those on aa’ by

ik Eaz(i ) .
Eg,(2,y) = —— / dtdy exp(ikR). (2)
21r A R

In the small-angle Fresnel zone, R in the denominator
is replaced by d, but in the phase factor includes the
quadratic terms,

) a b2 \2 3
R=[<d———~—> +(x—f)2+(y—n)2:|

2R, 2R,
@ » PB4y bty
~d——r 1 - C)
2R, 2R, 2d d

These substitutions into Eq. (2) give

ikeikd
Eﬁz(xry)—_.“‘ // dgdnEaz(Em)
27d A

x2+y2 b2 SZ +7)2 02 x$+y"l
Xexp[ik( - i — )} (4)
2d 2R, 2d 2R, d

If the wave were launched from the spherical surface 4
instead of the plane e’ and generally directed along z,
then the field on ae’ would lag the field F(£n) on 4
according to

Eua(bm)=F (£1) [k( - Eu”'z)] 5)
azls,M) = 3 —_ . S
! P ¢ 2R, 2R,

Actually, because there is some divergence of the wave
as it traverses the very small distance [a?— (£+4%) ]/
2R,, this equation can not be exactly true. The degree
of approximation that is involved is equivalent to
beginning with fields on the curved surface and then
regarding the element of surface area on A to be dédn.
This ~ approximation is permitted here because the
treatment is restricted to optical small-angle situations.
Although the fields on aa’ and 4 are different because of

+Jokn David Jackson, Classical Electrodynamics (John Wiley
& Sons, Inc., New York, 1966), p. 287.
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the phase factor, an integration over the spherical
surface 4 may be replaced by an integration over the
flat projection. These same statements also apply to 85’
and B, where

ey
Eﬁz<x,y)=c<x,y>exp‘—¢k(§— — )} ©)

Substitution of Eq. (5) into Eq. (4) gives

ikeikd
Eﬂz(x7y)='_ // dfd"IF(Eyﬂ)
A

2rd
PRERY
2R,

X {k[ " ]+'k[g“<2+ )
P 2Ry id 25 K

—l—%(x?—i-y?)—xf—yn}], (7N

where the customary notation, g.=1—d/R, and g,
=1—d/Rs, has been adopted.

* Power-Transfer Coefficient

If Eq. (6) is multiplied by its complex conjugate and
integrated over B, the fractional time-average power
passing through B (equal to that passing through the
projectionon 88") becomes

T, / / dudvF (u,)F (u,9)
=(;_d>2 / /B dudy / /A ddn / /A dudvF (£m)F ()
><exp{ig[%<gz—u2+n2—v2>+x<u—g>+y<v—n>]}. ®

This expression becomes simpler if the launch aperture,
A, is confocal (g,=0) with respect to the target, B.
Physically, this restricts the launch aperture to one that
is focused on the target. With g.=0, the power-transfer
coefficient, T, is

<—2—i—d>2 f /A dudv / /A ddnF (£m)F (u,0)% (§,n; u,0)
/ / dudoF (,0)F (u,0) |

T=

9

where

k
3€(£m;%?))=// dxdveXP{i;[—x(E—u)~y(n—v)] .
(10)
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Resonator Self-Consistent-Field Condition

Substitution of Eq. (6) into Eq. (7) gives the field G
at points B in terms of those at points on 4;

ike’ikd
Glrg)=— / / dEdnF (&)
27d A

kige R
Xexpig{%(&%n“’)%—i—(xz-{—yz)~x£—yn}- (1)

The field F’ at points on 4 in terms of G(x,y) is given by
a completely analogous expression. Consequently, when
these expressions are combined, F’ is specified in terms
of F. The self-consistent-field condition is obtained by
putting the field F’ after a complete pass {over and
back) equal to a constant times F at all points on 4.
Thus, if both mirrors have reflection coefficients of 41,
the self-consistent-field condition becomes

F'(u,v) =vF (u,9)
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~x(s+u>—y<n+v>]}. (12)

Putting I'= —+ve2%*4 and imposing the confocal condi-
tions, g,=0 and g,=0, then leads to

27d\?2
(——) TF (1,3) = f / dsdnF EK (63 ), (13)
k 4

where

k
K(é,n;u,v)=// dxdyeXP{i;l[—x(E-Fu)—y(n-{*v)]}-
(14)

The diffraction loss for a complete pass can be found
from either ¥ or T, and is

D=1-|y[>=1~|T|. (15)

A similar integral equation involving only one inte-
gration was used by Boyd and Gordon® to solve the
confocal-resonator problem for identical rectangular
mirrors. The full-pass equation, (13), is identical to that
obtained earlier by Boyd and Kogelnic.® The integral
equation for this problem was also found by Goubau
and Schwering” for the condition imposed on modes

& G.) D. Boyd and J. P. Gordon, Bell System Tech. J. 40, 489
(1961).

6 G5 D. Boyd and H. Kogelnik, Bell System Tech. J. 41, 1347
(1962).

7 G. Goubau and F. Schwering, Trans. IRE AP 9, 248 (1961).

1417

that could be propagated by an iterated system of phase
transformers.

Equation (13) is a homogeneous Fredholm equation
of the second kind, and can be derived from a variational
principle in the following way. Consider

k 2
<57:1> / /A dudv/ L dgdnF (EmF (u0)K (En; ,0)

| / / dudvP (u,9)F (u0)

(16)

If the function F is varied to make I' an extremum
(dT'=0), it follows that

2wd\? _
A

= / /A dudv{ / /A dedn[K (&n; u,v)F (£,1)0F (u,)

+K(’M,'U; E,ﬂ)p(f,ﬂ)‘w(“ﬂ’)] . (17)

Since 8F and 8F are arbitrary and independent vari-
ations, this variational requirement is equivalent to
Eq. (13), the confocal optical-resonator-mode equation,

and the same condition for the complex conjugate of
F,F.

MAXIMUM POWER-TRANSFER COEFFICIENT

Without imposing symmetry restrictions of any kind,
a remarkable similarity can be noticed between the
problem of finding a function F in Eq. (16) to make I"
an extremum [which led to Eq. (13)] and the problem
of finding the function F in Eq. (9) to make the power-
transfer coefficient a maximum. The only difference is
a change of the sign of % and v in going from X (¢,7; #,?)
to K(&n;u,). The same variational methods used
above then lead to the condition for an extremum
power-transfer coefficient

27rd\?
<—;—-> TF(%,?))=// did’le(E,ﬂ)JC(fm, u,v),
‘ (18)

3{:://;dxdyexp{%[x(u‘_f)'f‘y(”‘“ﬂ)]}-

With the proper phase adjustment, this equation
applies to non-confocal situations as well. If

F * ga 2.y_9
(s,n>exp{z L >}

in Eq. (8) is replaced by F"’ (£,3), this same expression
for the maximum power transfer can be derived for F"',
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All that is needed is an adjustment of phase to keep 4
focused on the center of B.

A substitution to change the sign of each of the vari-
ables £, 7, %, v, x, and y gives

=/fA_d5an<—z, —n)f/;_ dudy

k
XeXP{i;[x(u—E)—l-y(v—n)]}- (19)

If the surfaces 4 and B are both such that each has C,
rotation symmetry with respect to the z axis [i.e., for
each element dxdy at (x,y), there is an element of area
dxdy at (—x, —y)], then Eq. (19) for F(—u, —v) is
identical to Eq. (18) for F(#%,v). The nonzero solutions
of these two equations must then be the same set of
independent functions. Thus, each of the one or more
functions F; that correspond to the maximum value of
T must have the property F;j(—u, —v)= eF;(u,v), where
e is a constant. Hence, F;j(u,y)=eF;j(—u, —1)
=eF;(u,y); whereby e==£1, and F;(up)==xF;
(—u, —v). When use is made of this result in Eq. (18),
a substitution to change the sign of # and v gives

2mwd\?
:E('k—'> Tmaij(u,‘v) =f/ dgd"lF:i(E;n)K(sm; u;”);
‘ (20)

which is identical to the confocal-resonator equation
(13) with Tmax= |T'| max; or, with the help of Eq. (15),
Tmax= (1— Dpnin)?. This completes the derivation of the
theorem in question. It is now instructive to examine
the way in which the required symmetry restrictions
influence the set of eigenfunctions for the confocal-
resonator equation (13), and to compare the eigen-
functions of Eqs. (13) and (18).

COMPLETENESS AND PARITY

It is not necessary to invoke symmetry restrictions
for the surface 4 in order to show that the eigenfunc-
tions of the extremum power-transfer condition [Eq.
(18)] constitute a complete orthogonal set of functions
on A. The Cy symmetry condition for 4, however, is
used in order to obtain a correlation between these
functions and those for the confecal resonator and to
show that they represent definite parity states. To see
how all this comes about, we recall that the sufficient
conditions for the eigenfunctions of Eq. (18) to be
complete® are

8 Philip M. Morse and Herman Feshbach, Methods of Theo-
retical Physics (McGraw—Hill Book Co., New York, 1953), p. 774.
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(1) The equation for the eigenvectors corresponds to
some variational principle,

@ 7= / / dudv / f dEdnF ()P ()X (Em; 4,)

is real (the self-adjoin or hermitian condition for the
corresponding operator), and

(3) Jisgreater than zero (the corresponding operator
is positive definite).

The first of these conditions is already satisfied be-
cause Eq. (18) was obtained as the result of applying a
variational principle to Eq. (9). The second condition
requires that the kernel be real. The imaginary part
of the kernel of Eq. (18) will vanish if for every element
of area dxdy at (x,y), there is an element dxdy at
(—=, —»). Thus, if B has C, symmetry, the kernel is
real and symmetric and, as is well known, the eigen-
values are real and eigenfunctions belonging to different
eigenvalues are orthogonal.

To investigate the third condition, we write the func-
tion F in Eq. (18) in terms of its real and imaginary
parts, F=F,-+iF ;. If use is then made of a trigonometric
identity in the integrand of the kernel,

k
K= f / drdycos-{(s-4m) = 3,

the expression for J can be written

= / /B dxdyl[ / /A dEanr(Em)COS;(xf—l-yn)T

k 2
_|.[ / / dgan,(g,n)sing(x£+yn):|

~-similar terms for F i}. (21)

In this expression, it is obvious that J>0 for any non-
zero function, F, and finite areas 4 and B. Thus, the
only symmetry requirement needed to show that the
eigenfunctions of the extremum power-transfer condi-
tion (18) form a coraplete orthogonal set on 4 is the C,
rotation-type symmetry for surface B. The fact that T
can never be negative is in agreement with the physical
meaning of the power-transfer coefficient, which re-
stricts T to the range of values: 0< T <1,

It has already been pointed out following Eq. (19)
that if surface 4 also has C; symmetry, then the inde-
pendent functions that satisfy Eq. (18) have definite
parity; i.e., gi(#,9) = £ g;(—wu, —v). With this symmetry
restriction for 4, it is also clear that any odd function
g is orthogonal to any even function g;; i.e.,

/ f Bi(u,0)g;(u,0)dudv=0
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because the integrand is an odd function and for every
element dudv at (u,9) there is an element of area dudv
at (—u, —v). Thus, when degeneracies occur, it is only
necessary to consider linear combinations of the func-
tions g that have the same parity to form the orthogonal
set. In conclusion, if B has C» symmetry, the eigen-
functions of Eq. (18) form a complete orthogonal set on
A which we choose to be normalized so that

// Su(u,0) fi(u,0)dudy =0s;. (22)

If 4 also has C, symmetry, these functions can always
be selected to have definite parity

fk(’l/t,v)=:|:fk(—%, —’l)). (23)

If both 4 and B have C; symmetry so that Eq. (23)
holds, then a change of variables in Eq. (18) for one of
the eigenfunctions, fx, converts it into Eq. (13) for the
same function f;. Thus, the eigenfunctions of the con-
focal-resonator equation (13) are identical to those for
the extremum power-transfer condition (18) when the
entire problem has Cy symmetry. The eigenvalues have
the correspondence

P;C=Tk if fris even
I‘k= —Tk if fk iS Odd.

If instead of first examining the eigenfunctions of
Eq. (18), we had started with the confocal-resonator
equation (13), all of the same arguments would have
been valid up to the proof of the positive definite
property. The expression for Eq. (13) that is analogous
to Eq. (21) has negative signs in front of terms involving
the sine function. If 4 also has C; symmetry, the out-
come is now clear. The positive eigenvalues correspond
to a complete set of even functions that give zero for the
sine terms in Eq. (21), and the negative eigenvalues
correspond to a complete set of odd functions.

An alternate derivation of the theorem in question
can be given once it is known that the eigenfunctions of
Eq. (13) form a complete orthogonal set with definite
parity. Equations (23), (22), and (13) can then be used
to integrate Eq. (9) when F= f,, where |T| is the
maximum [T'x|. The result is

T0= l P{)l 3 (24)

where we have used the fact that 7 must be positive.
When F in Eq. (9) is any arbitrary sectionally con-
tinuous function, it can be expanded in the complete set

F(tm)=Zwarfr(Em). (25)

Equations (23), (22), and (13) can again be used to
integrate Eq. (9), giving

TrZrlar|?=21]ar|2(£T). (26)
When Eq. (24) is multiplied by Z:]a:|? and subtracted
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F1G. 2. Dimensions of the rectangular transmitting
and receiving apertures.

from Eq. (26), the result is
Z(£T%~|To|) | ax?
Ek’dklz

TF—'T()':

27

Because |To| is the largest magnitude of the I's, the
quantity on the right is obviously negative or zero.
Thus, To>T r, which completes the derivation.

RECTANGULAR APERTURES

Several previous calculations have been concerned
with the radiation patterns produced by truncated
gaussian illumination distributions.®? Takeshita, for
example, compares his results for such illumination of
circular apertures with optical-resonator modes for
larger Fresnel numbers. The purpose of this section is to
compare both gaussian and uniform-illumination pat-
terns with those produced by the optimum power-
transfer illumination for a wide range of Fresnel
numbers. Rectangular geometry is selected because it
is known that the prolate-spheroidal angle functions are
solutions of Eq. (13) for this case.’

The dimensions of the rectangular apertures con-
sidered are shown in Fig. 2. Because the variables of the
Helmholtz equation separate in rectangular coordinates,
it is convenient to consider partial solutions of this type
here. In Eq. (9) we put

F(En)=X()Y (p), (28)
where
(=as, u=al
1=bp, v=U. (29)
In what follows, the notation
o= (ka/d)tmax, B= (kb/d)Ymax
c= (ka/d)x, C=(kb/d)y (30)

has also been used.

The differential gain is defined as the time-average
power per unit solid angle (dP/dQ) radiated in the
direction € divided by the time-average power through
A per unit solid angle, assuming uniform radiation in
all directions. With the above substitutions into Eq. (9),

s Arden L. Buck, Proc. IEEE AP 15, 448 (1967).
10 Shinya Takeshita, Trans. IEEE AP 16, 305 (1968).
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TasLe L. Expressions used to compute the differential, G(c,C)
= (474 /N)g(c)g(C), and finite, F(a,8)= (4x4/N)f(2)f(B), gains

for the various illumination distributions.

DISTRIBUTION fla gte)
X(s) | finatt-9) ! flictt-s),
Gossion 2 _jl' _jl‘ sinlt-s) o xtiasat :/; Jl'e XieXidsat
Xs) = € — —
2 f {xs) s zj; {xe) s
_[ i
Uniform az) M) (sin c)2
X(s) = constant & SinFi2nFiN2a ! ¢
Prolate Spheroidal ) 2 2 Uy SP
v Eunclion [Roaen] N_on(m[son‘a"mon(a‘a)]

X(s) = Sop(@,s) 2 . 12
= m [Ron(a'])son(a )E)]

the x and y parts separate to give the differential gain as

dP/dQ
G(c,0)———=Gug(c)g(C), (31)
PA/47F
where
Go=4rA /N,
and
g(c)=/ / e“(“")X(s)X(t)dsdt/Z/ | X (s)]%ds.
—1J-1 —1
(32)

In place of the power-transfer coefficient, we define
finite gain in analogy to the definition for differential
gain. It is proportional to T, but has the advantage of
becoming equal to the differential gain as area B
approaches zero. With the above substitutions into
Eq. (9), the finite gain becomes

F(a,8)=Ps/Q/Pa/br=GCof(@)f(8),  (33)
where

L el sina(f—s) _
f(a)=[_1 —/_1 mX(S)X(t)dsdt/

2/1 | X (s)]%ds. (34)

The prolate-spheroidal angle functions, Sox(e,s), obey
the integral equation
1
2i"R0n1(a,1)Son<a,t) = eia“Son (a,S)dS,

-1

(35)

where Rga! is the prolate-spheroidal radial function of
the first kind. It is the property expressed by Eq. (35)
that gives these angle functions much of their utility—
they are, so to speak, their own finite Fourier trans-
forms. It is straightforward to verify that .Sy, are the

H. N. REXROAD AND B. J.
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functions that solve Eq. (13) for the rectangular case.
Equation (35) can be used to evaluate Eq. (32) to
obtain the differential gain when X(s) is a prolate-
spheroidal angle function. An integral theorem due to
Slepian and Pollak,!

L sina(t—s)

2a
’—'[ROnl (ayl)]ZSOn (a,t) = SOn (a,S)dS, (36)

-1 a(t—-s

is useful for integrating an expression like Eq. (34)
when X (s) is a prolate-spheroidal angle function.

Expressions for f(e) and g(c) that are needed for the
finite and differential gains, respectively, are shown in
Table I. Actual results for gaussian illumination were
obtained by a numerical integration of Egs. (32) and
(34). The expression (sinc/c)? for differential gain in the
case of uniform illumination is a familar result. The
expression for f(a) in the uniform-illumination case was
obtained from the series expansion for [sina{i—s)/
a(t—s)]. Results for the prolate angle-function distri-
bution were computed using Egs. (35) and (36) in (32)
and (34), respectively. In these expressions, Flammer’s
normalization scheme was used throughout, whereby
Swnla,s) becomes equal to the associated Legendre
polynomial when a=0 [S,.(0,5)=P,m(s)], the radial
function RmaYe,(c/a)] approaches the spherical
Bessel function 7.(c) as ¢/« approaches ©, and N, (c)
is the normalizing factor

1

/ Sp(0,5)Smn (0,5)ds = 8pn NV mn (c2).
-1

The last two expressions for g(c) in Table I are equi-
valent. One can be obtained from the other by two
applications of the connecting formula, Saa(c,s)
= Kma D {€) Rmnt(¢,s). Normally, it is easier to use the
expression for which the arguments of S, and Ron!

[s[{53]
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Fic. 3. Differential gain in the main lobe for an angle-function
illumination of a rectangular aperture. X (s)=Sp(e,s). Gain
=4rAg(c)g(C)/N\2 c=kax/d.

(1;6]1))' Slepian and H. O. Pollak, Bell System Tech. J. 40, 43
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fall in their normal ranges. The d coefficients given by
Flammer™ were used to obtain numerical results for the
angle-function distribution.

The differential gain for the angle-function distribu-
tion is shown in Figs. 3 and 4. As o is increased the main
lobe becomes less sharply peaked, but contains more of
the total power, which is appropriate for a maximum
power transfer through a receiving aperture of finite
size, Xmax=(d/ka)a. The improvement of finite gain
(proportional to the power-transfer coefficient) that is
achieved by using the angle-function distribution in
place of 2 uniform one is shown in Fig. 5. The finite gain
for the best truncated gaussian-distribution illumination
is so close to the angle-function results that it would only
slightly broaden the solid line if plotted on this same
graph. How this comes about is indicated in part in
Fig. 6. In this figure, a value of u was selected for each
value of « (or target size) to produce a maximum finite
gain. When «=0, the angle-function, gaussian, and
uniform distributions are all in exact agreement as
required by the well-known fact that a uniform distri-

F1G. 4. Side lobes of Fig. 3.

1.0

fay

at h
SN

2z 3 45

F16, 5. Comparison of finite gain for angle-function and uniform
illuminations. The optimum truncated-gaussian illumination
produces a finite gain so close to the solid curve that the distinction
can not be seen on this scale. F=4x4 f(a) f(8)/N.—X (5) = Soo(e,5).
----X(s) =const.

2 Carson Flammer, Spheroidal Wave Functions (Stanford
University Press, Stanford, Calif., 1957).
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o 2 a4 6

Fic. 6. Comparison of amplitude distribution functions for
angle function and for the optimum gaussian-function illumina-
tions. The origin has been translated to a new position for each
value of a. —X (5)=Soo(a,s). ---- X (s) =exp[— (us)?].

bution produces an optimum differential gain. As a is
increased, the optimum gaussian function is seen in each
case to agree remarkably well with the angle-function
distribution. When a becomes very large, the agreement
becomes even better. In fact, as a—> o, the prolate-
spheroidal angle functions become the Hermite-Gauss
functions

Son(@,s) = N.H.(sv/a) exp[—(a/2)s*].  (37)

At a=35, the value of u for the optimum gaussian func-
tion, 1.5280, is already close to (a/2)!2=1.579.

CONCLUDING REMARKS

The close relation between the lowest diffraction-loss
eigenmode of a confocal resonator and the maximum
power-transfer coefficient is not surprising. Both are
dictated by the same physical restriction, a minimum
diffraction loss. The fact that irradiance distributions
can be obtained from lasers that are ideally suited for
communication with distant targets may be a fortunate
circumstance. The close agreement of the optimum
truncated gaussian distribution with the prolate angle-
function distribution for rectangular apertures is con-
sistent with the fact that the agreement must become
exact in both limiting cases of large and of very small
receiving-antenna sizes.
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